Impact of Glass Variations on MAC Loads

Mukesh Rustagi, PGW Rob Vandal, Guardian Tony Shaw, Pilkington

Agenda

- Glazing impact on thermal load
- Glazing impact on fuel consumption and CO₂ emissions
- Impact on ICE, HEV, PHEV, and EV
- How to measure impact of glazing
- Glazing impact and test procedures
- Conclusions

Glazing Impact on Thermal Load

Glazing reduces heat load in vehicle

- Various technologies available
 - Reflective Glazing
 - Reflects Infra-Red energy
 - Reduces transmitted energy
 - Reduces energy absorbed by glass
 - Reduces total energy entering vehicle
 - Very effective for parked/slow moving vehicle
 - Meets all FMVSS requirements
 - Is commercial
 - Is not a "tint"

Glazing reduces heat load in vehicle

- Various technologies available
 - Absorbing Glazing
 - Absorbs energy into glass
 - Reduces transmitted energy
 - Glass composition and/or laminated construction
 - Convection removes absorbed energy at higher winds/speeds
 - Meets all FMVSS requirements
 - Is commercial
 - Can be tinted

Glass impact on exterior temperatures

(Parked Car, Phoenix, 1:00 pm)

Source: Thermal modeling, PGW data

Glass impact on interior temperatures

(Parked Car, Phoenix, 1:00 pm)

Source: Thermal modeling, PGW data

Actual Soak Temperature Difference

 SAE/IMAC project showed temperature reductions from glazing can be very significant. Temperature difference would be even greater when compared to tinted glass.

Glazing impact on fuel consumption and CO₂ emissions

- NREL analysis shows 1.2% AC Fuel Reduction per 1 deg F reduction in interior (breath air) temperature
 - AC Fuel reduction of as much as 33% possible over a base case of tinted glass (even higher over clear glass)
 - AC Fuel reduction of 27% possible over current mix of glass (per CARB calculations)

Impact on ICE, HEV, PHEV, EV

- Impact on ICE well researched
- Recent studies show glazing has significant impact on HEV, PHEV, and EV
 - Fuel consumption improvement > 8% over composite
 UDDS/US06 drive cycles (55/45), e.g. 41.6 mpg vs.
 38.4 mpg (source: NREL/PGW)
 - Other benefits
 - Consumer comfort
 - Stop/Start performance improvement
 - Enhanced battery life

How to measure impact of glazing

- Measure spectral performance of glazing
 - International standards exist
- Use model to determine heat load into vehicle
 - Several models exist (NREL's VSOLE, Radtherm, etc.)
- Use Fuel Consumption Model
 - Models exist (NREL's ADVISOR)
- Apply to national average
 - As developed by EPA/NREL

Glazing impact and test procedures

- Test procedures, when devised, have to account for realworld conditions
 - Indoor testing has to replicate solar spectrum
 - Glazing is specifically designed for real-world conditions
 - Sufficient heat soak to represent real-world conditions
 - Account for solar movement within the day
 - Include impact during drive cycle (including wind speed)
 - Account for "shoulder" months AC use could be mitigated with glazing completely
 - Glazing to be credited with AC weight reduction due to efficiency
 - Start/Stop functionality enhancement
 - Battery efficiency and long term impact on battery

Conclusions

- Glazing has significant impact on cabin temperature and AC system
 - Breath air temperatures can be lowered by as much as 14 deg C
 - Cool down times are reduced
 - Reduced heat load → Lower AC Fuel Usage
 - Lower AC Fuel Use → Lower CO₂ emissions

Reduced glazing thermal conductivity reduces steady state MAC indirect emissions

Total heat transfer = Conduction + Radiation = $h \cdot A \cdot (T_A - T_C)$ + Radiation where 1/h = 1/h_o + d/TC + 1/h_i Fix d, Radiation to isolate TC effect

Reduced thermal conductivity means

- → reduced Total heat transfer
- → reduced HVAC cooling load
- → reduced MAC indirect emissions

Computational Fluid Dynamics case study:

Phoenix, mid-day, Apr - Oct, 100 kmph vehicle speed

Reduced roof & backlite thermal conductivity from

- 1 W/m-°K (glass) to 0.2 W/m-°K (polycarbonate)
- → 5.5% reduction HVAC load (kW)
- → 4.5 gCO₂/mile reduction MAC indirect emissions

Reduced thermal conductivity glazing materials like polycarbonate can help reduce MAC indirect emissions ... 5.5% load reduction achievable

