

Keeping Abreast of Emerging Test Technologies

DoD Maintenance Symposium – October 2005

Bill Ross NAVAIR PMA260

Test Technology - Scope

- Electronics/avionics on-system and off-system automatic maintenance test
- I will use the Navy CASS Automatic Test Equipment and Test Programs as the examples, but most of the test technology discussed are:
 - Leveraged Joint Services initiatives
 - Cooperative initiatives with Industry
 - 90% commercial solutions
- Terms:
 - Automatic Test Equipment (ATE) = The Test System
 - Test Program (TP) = the diagnostics S/W and the H/W to interface weapon system components to the ATE

Pursuing Test Technology

Two Reasons:

- 1. To add capability to our test systems to meet emerging weapon system test requirements
 - Four times as accurate as the weapon system component being tested
- 2. To replace existing test capability to:
 - Address obsolescence
 - Improve quality of test
 - Improve through-put
 - Satisfy new operational need scalable/mobile/smaller
 - etc

The CASS Story

30 Legacy Testers

One tester Family

\$3.8B Reduced Total Ownership Costs

Test Technology Roadmap

Current Test Technology Investments

- Advanced E-O test system
- Inertial Test Reference System
- Fast Serial Digital Test
- Link 16 Test Technology
- Advanced Synthetic Instruments
- Programmable Serial Bus
- Improved ATE and TP Software
- Common Tester Interface (CTI)
- Multiple Analog Stimulus and Measurement
- High Density Analog Instrument
- Next Generation Test System-level Demonstration
 - Agile Rapid Global Combat Support (ARGCS) ACTD

Advanced Synthetic Instruments

- Think of Synthetic Instruments as "software instruments"
 - Eliminates redundant ATE overhead hardware
 - Eliminates redundant ATE functionality
 - Creates needed instrument/function via software
- Modernized Mainframe CASS could replace at least <u>12 existing</u> separate stimulus & measurement instruments with a small SI package
 - Demonstration programs underway
- Benefit: at least 65% decrease in hardware (and, therefore, support costs) and footprint

Programmable Serial Bus Instrument

- Bus Test Emulator provides
 - Bus communication standard serial bus and custom bus protocols (MS 1553, ARINC 429, RS 422, RS 232, MS 1773, RS 485, etc)
 - 4 channels per card
 - Parametric variation for bus performance verifications
- Benefit:
 - Footprint reduction (5 cards replaced by 1 card)
 - Higher quality tests with Increased capability

Reusing Diagnostics Data

- ATML (XML for Automatic Test and diagnostics)
 - Industry/Gov't Working Group & IEEE SCC20 standard
 - Integrated Diagnostics Interfaces
 - Knowledge Based Systems
 - Test Requirements Modeling
- "Smart" concepts for improved test program diagnostics (a CASS plug-in)
 - Use platform BIT data to "direct" a start point in a test program 25% runtime savings
 - Historical maintenance data reuse to improve diagnostics decisions
 - Demonstrating on F/A-18 APG73 Radar Receiver and Super Hornet Flight Control Computer

Multiple Analog Stimulus and Measurement

- Multiple Analog Instrument
 - Each test pin has 6 instruments, all useable at same time
 - 1 VXI card has 32 pins, all useable at same time
 - CASS currently has 64 different instruments the 3 Ai7 cards that CASS will use add 576 instruments – all useable at the same time
- Benefit:
 - Significant reduction in some TP runtimes
 - Real-time functional test higher quality diagnostics

Teradyne Ai710

High Density Analog Instrument

- High Density Analog Instrument
 - Eight single-ended system-per-pin channels, including up to sixteen 200 MHz universal timers, 50 MSa/s 12-bit digitizers and 50 MHz 12-bit arbitrary waveform generators.
 - Includes a 6.5-digit digital multimeter and a 2-channel 1 Gsps digital sampling oscilloscope.
- Parallel source and measure capability for high-speed functional and operational analog testing
- More accurately emulates complete system-level operation
- Benefit: significantly reduce test times and increase fault coverage while reducing footprint

Teradyne Ai760

Common Tester Interface

- Industry/Gov't Working Group developing a common standard pin map for the physical mating of the interface device to the automatic tester
 - IEEE standard in process
- Specification requirements include scalability, frequency coverage from DC to light, cost, reliability, etc
- Benefit:
 - Enable interoperability across DoD testers
 - Reduce costs associated with test program rehost
 - Ease insertion of new instrument technology
 - Facilitate modification and upgrade to existing testers

Agile Rapid Global Combat Support System (ARGCS)

FY04 Advanced Concept Technology Demonstration

Our eCASS Vision

- Much smaller footprint with more test capability
- Faster run times
- Multi-lingual test environments
 - Facilitate factory-to-field
- Interoperable with other Services' ATE
- More scalable to needs
- Reduced acquisition and support costs
- "Smarter" diagnostics concepts
 - Faster and better diagnostics
 - Reduced A-799 rate