AVL



Failure Mode Based Optimization of Durability and Reliability Validation Programs

SAE Ground Vehicle Reliability Committee Presentation

**Dr. Klaus Denkmayr** 

Reno, October 23rd, 2006



### Content

- AVL's Reliability Engineering Process
- The Load Matrix Failure Mode based Optimization of Validation Programs
- Conclusions



### Content

## AVL's Reliability Engineering Process

 The Load Matrix – Failure Mode based Optimization of Validation Programs

Conclusions

### Who is AVL?



**Privately owned company** (Owner: Prof List and family) **Turnover:** 1984: ~40 million € 2006: ~500 million € Staff: 1984: ~560 2006: ~3500 Average R&D spending 10 % of turnover



AVL Powertrain Engineering

AVL Advanced Simulation Technologies

AVL Instrumentation and Test Systems

### **AVL Establishments**



AVL

### A Reliability Engineering Approach for Powertrain Development



### AVL's Reliability Engineering ...

- Is focused on failure-free products in the field
- Includes a range of methods,
  - Risk management
  - Field and test data analysis
  - Statistical methods
  - Validation optimisation
- Is a comprehensive process throughout product development



### **The Reliability Engineering Process**





## **Project Risk Assessment**

- To get a quick, clear and unbiased view on project risks
- To be able to act upon critical risks in an appropriate way

How?

- The risks not to reach the project targets are rated.
- Assessment is done similar to FMEA. Scoring system, facilitator, interdisciplinary team.
- Technical, organisational, financial, and legal / contractual risks are covered.
- Generation of an action plan.





### **Robustness / DoE Techniques**

- Application of DoE (Design of Experiments) and related statistical methods
- Definition of variants of reference duty cycles
- Derivation of load variations for especially critical components / failure modes



### **Benefits**

- Optimized, robust design and testing
- Reduction of test effort
- Insight into "load space" and damaging parameters

## **Reliability Allocation**



(simplified model)

## F target = 0.04 Reliability values (eg, B<sub>10</sub> and RF) are allocated to each subsystem

 Values are derived from similar projects, prototypes, FMEAs and field data.

The system is modelled reliability-

wise as a block diagram

### **Benefits**

- Gives an instant overview of the whole system and on reliability-critical parts
- Provides reliability targets for as an input for supplier technical specs
- Serves as a basis for life cycle cost models

### Reliability Charts -Reliability Improvement Monitoring

- Monitoring technique shows the durability and reliability status of an engine / powertrain / vehicle during product development
- One chart is made for the system lifetime, another one for Repair Frequency or MTBF value (classical Reliability Growth Testing)



### **Benefits**

- Shows current and historic values of reliability indices
- Illustrates the rate of improvement of these indices
- Provides a basis for prediction of the indices in the future

### **Warranty Cost Models**

### **Warranty Cost Models**

- illustrate in which way warranty costs depend on the B<sub>10</sub> and the MTBF/RF values of the product
- reflect 100%-repair campaigns due to serial defects
- require as input repair costs and subsystem failure distributions (from field data or estimated from protos)

### **Benefits**

- make the costs of unreliability transparent
- show the SOP risk



can be used as a basis for life cycle cost prediction



### **The Reliability Engineering Process**





### Content

- AVL's Reliability Engineering Process
- The Load Matrix Failure Mode based Optimization of Validation Programs
- Conclusions

### **The Load Matrix**

### The Load Matrix is ...

 a methodology to optimise test & validation programs systematically

### The Load Matrix is applied to

- optimise existing "traditional" durability & reliability validation programs
- design optimal validation programs for new systems (eg, DPF)



### **Load Matrix Details**

### The Load Matrix ...

- is based on component and failure mode specific test acceleration factors
- uses these specific acceleration factors as weighting factors to compare test efficiency and life coverage
- uses damage models to calculate acceleration

### The Load Matrix is used for ...

 minimising validation costs without jeopardizing product durability & reliability

### **Load Matrix Process**



## Selection of critical components & failure modes

# Existing reliability field data (e.g, from previous engine)

| TOP FIELD PROBLEMS OF ENGI |                    |  |  |  |
|----------------------------|--------------------|--|--|--|
| Part name                  | Failure Rate (ppm) |  |  |  |
| Injection pump             | 2110               |  |  |  |
| Cylinder head              | 1690               |  |  |  |
| Connector 36A              | 1450               |  |  |  |
| ECU                        | 1420               |  |  |  |
| Gasket 145                 | 1350               |  |  |  |
| T/C                        | 1100               |  |  |  |
| Exhaust manifold           | 1040               |  |  |  |

# FMEAs and FP sheets of new subsystems

| Π | Edit FMEA                                                                                                    |                        |                               |                          |                     |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|--------------------------|---------------------|--|--|--|
| F | FMEA Add Delete Move Edit Help                                                                               |                        |                               |                          |                     |  |  |  |
| E |                                                                                                              |                        |                               |                          |                     |  |  |  |
| Г | - FMEA REPORT NO: F789                                                                                       |                        |                               |                          |                     |  |  |  |
|   | P                                                                                                            | art Details            |                               | Fail Details:            |                     |  |  |  |
|   | 13659 End Plug Entrap Oil/Gas in Cylins <sup>®</sup> No Seal with Cylinder<br>12660 Piston Proceures Oil/Gas |                        |                               |                          |                     |  |  |  |
|   |                                                                                                              |                        |                               |                          |                     |  |  |  |
|   |                                                                                                              | Part Narro<br>Part No. | Part Function                 | Fail Mode                | Fail Effect         |  |  |  |
|   | 1                                                                                                            |                        | Entrap Oil/Gas in<br>Cylinder | No Seal with<br>Cylinder | Hatch will no<br>up |  |  |  |
|   | 2                                                                                                            |                        |                               |                          |                     |  |  |  |



#### Component / failure mode

- 2 Piston Ring / wear
- 3 Cylinder head / valve bridge fracture
- 4 Cylinder head / valve seat wear
- 5 Connector / Fretting

6

....

Result: List of critical components and failure modes



### An Important Tool: The FP Sheet

## FMEA, Risk Analysis, Field Data, Experience



= Extended FMEA with emphasis on parameters relevant for damaging and critical operating conditions



### Example of an FP Sheet (shortened)

| ED about                 |                        |                  |                                                                                                      |                  |                                                       |                                                                                                                              |                                         |                                                                    |                          |                                                         | 1            |
|--------------------------|------------------------|------------------|------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--------------------------|---------------------------------------------------------|--------------|
| FP sheet                 |                        |                  |                                                                                                      |                  |                                                       |                                                                                                                              |                                         |                                                                    |                          |                                                         |              |
| Subsystem/<br>Komponente | Failure Mode           | Failure Cause    | Failure effect                                                                                       | Pri<br>orit<br>J | (Sub)System-<br>parameter                             | Damaging<br>operating<br>condition                                                                                           | Classification<br>model                 | Damage model                                                       | Damage<br>model<br>class | measurements                                            | rema<br>acce |
| Substrate                | substrate cracks       | thermal stress   | soot accumulation<br>too low                                                                         | 1                | Temperature, -<br>gradient, exhaust<br>gas stream, O2 | Regeneration<br>operation, worst case<br>(= filter overloading,<br>idle during<br>regeneration), load<br>change (start/stop) | Rainflow substrate<br>temperatur        | Wöhler / Miner                                                     | в                        | Temperature<br>difference sensor<br>vehicle application |              |
|                          | Volume reduction       | ash accumulation | increased<br>regeneration<br>frequency >><br>emissions too high,<br>oil dilution >> engine<br>damage | 1                | Ash in exhaust gas,<br>temperature                    | high load operation<br>(oil, fuel<br>cunsumption), ash<br>content in oil, fuel<br>quality                                    | accumulated oil and<br>fuel consumption | oil consumption<br>measurement, fuel<br>consumption<br>measurement | в                        | durability<br>documentation                             |              |
| Catalytic coating        | dagradation of surface |                  |                                                                                                      | 1                | ash in exhaust gas                                    |                                                                                                                              |                                         |                                                                    | в                        |                                                         |              |

AVL

### Example. Load Matrix Single Sheet for Cylinder Head High Cycle Fatigue





### **Example. Load Matrix Summary Sheet**

| A                     | В                                                           | D                             | E                            | F                     | Н                   |                                       | J                                       |
|-----------------------|-------------------------------------------------------------|-------------------------------|------------------------------|-----------------------|---------------------|---------------------------------------|-----------------------------------------|
| -                     | Unit (km, mi)<br>confidence level<br>Show: planned duration | <b>km</b><br>0,9              |                              |                       |                     |                                       |                                         |
| -                     |                                                             |                               |                              |                       | E<br>emonstrable re | 310-target (km)<br>Jiability at (km)  | 250.000<br>60.000                       |
| Component Information |                                                             |                               |                              |                       | Customer Refe       |                                       |                                         |
| Sheet                 | Crit. Component / Failure Mode                              | Weibull<br>Parameter<br>Gamma | Weibull<br>Parameter<br>Beta | Reliability<br>Target | -                   | Sum of<br>Equivalent km               | Demonstrable<br>Reliability<br>(Weibull |
| 1                     | Cylinder Head - HCF                                         | Π                             | 1,00                         | 0,999                 | test<br>300.000     | 6.716.000                             | Distribution)<br>0,980                  |
| 2                     | Cylinder Head - LCF valve bridge                            | 0                             | 2,50                         | 0,998                 | 240.000             | · · · · · · · · · · · · · · · · · · · | 0,996                                   |
| 3                     | Piston Ring - Wear                                          | 0                             | 2,00                         | 0,995                 | 280.000             | 6.534 50                              | 0,994                                   |
| 4                     | DPF - Substrate Crack (thermal cycling)                     | 0                             | 2,50                         | 0,990                 | 300.000             | 6.250.000                             | 0,997                                   |
| 5                     | Injector joint - wear (engine vibration)                    | 0                             | 1,50                         | 0,999                 | 300.000             | 6.611.000                             | 0,989                                   |

- Highlights existing durability risks of the validation program
- Indicates to what extent the test program is adequate to demonstrate the target reliabilities

Derived actions to reduce risks include higher acceleration, new test procedure, calculation (e.g., FEM analysis), longer test time / mileage, customer fleets)

## **Calculation of Acceleration Factor (simplified)**



### Test: Cyclic Load Test

### Vehicle (duty cycle)



### Data Processing w.r.t. to Damage



AVL

## Example of Damage Calculation (Matlab-based)





## **Classes of Damage Models**

| Class | Method                                         | Example                                                                |
|-------|------------------------------------------------|------------------------------------------------------------------------|
| A     | empirical model based<br>on general experience | damage is proportional to the number of actuations                     |
| В     | simplified physical model                      | $L = (C/P)^m$ for the lifetime of a ball bearing                       |
| С     | full physical model<br>Modell                  | FE-Analysis + Damage Accumulation<br>Hypothesis + Actual material data |

### Example. Optimization of an Exhaust Aftertreatment System Validation Plan



#### Reliability



#### Durability



## **Optimization**

### Plan after Optimization





### Load Matrix as Key Element of an Overall Risk Mimimisation Process





### Content

- AVL's Reliability Engineering Process
- The Load Matrix Failure Mode based Optimization of Validation Programs
- Conclusions



### Failure mode based optimization of validation ...

- Generates complete and balanced validation plans, including analysis, component testing, test bed tests, vehicle tests.
- Shows how far durability and reliability targets can be demonstrated.
- Helps to avoid unnecessary testing.
- Supports the exchange and proper use of key information from all involved partners, including suppliers.
- Supports optimised assessment procedures to make full use of all available information.
- Helps in deciding on the benefits of additional validation steps.

## **A Selection of Recent Projects**

| Customer     | System                           | Tasks                                                                                                                                                                       |
|--------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| European OEM | HD Diesel Engine                 | <ul><li>Setup of a warranty cost prediction model</li><li>Assessment of Validation Program</li></ul>                                                                        |
| European OEM | HD Diesel Engine                 | <ul> <li>Determination of sub-system specific acceleration factors</li> <li>Validation program optimisation</li> </ul>                                                      |
| Supplier     | Diesel Particle Filter           | <ul> <li>Definition of a test program</li> <li>Definition of the LOAD MATRIX for Substrate, Mat<br/>and Canning</li> </ul>                                                  |
| European OEM | DENOX System                     | <ul> <li>Definition and optimisation of a test program</li> </ul>                                                                                                           |
| Japanese OEM | SUV and LCV<br>TCI Diesel Engine | <ul> <li>Determination of the effect of a different vehicle<br/>application (LCV instead of SUV) on engine life</li> <li>Definition of a durability test program</li> </ul> |
| European OEM | Rear Axle                        | <ul><li>Setup of Load Matrix</li><li>Assessment of current test program</li></ul>                                                                                           |
| European OEM | Pass Car Gasoline Engine         | <ul> <li>Comparison of two different validation programs</li> </ul>                                                                                                         |
| European OEM | LCV and HD TCI Diesel<br>Engine  | <ul> <li>Assessment of validation program for a DPF<br/>application</li> </ul>                                                                                              |

AVL



## Thank you for your attention!