

WEAPON SYSTEM PERFORMANCE INDICATORS -OSD SUSTAINMENT KPPs

29 Oct 2008 Roy E. Rice, Ph.D., P.E. Chief Technologist, Teledyne Brown Engineering

A Teledyne Technologies Company

OUTLINE

- Purpose of Metrics
- Concerns and Issues
- OSD Sustainment Metrics
- Example metrics for Different Purposes

PURPOSE OF METRICS

- Influence design
- Track performance
- Manage Programs
- Motivate behavior
- Fix accountability
- Compare systems
- Perform analysis
- Report Status

No one metric or set of metrics accomplishes all these in Sustainment!

Ultimately, metrics are used to inform decisions!!! The question is...what are the decisions?

CONCERNS AND ISSUES

- Different metrics needed in various phases of Life Cycle
 - ORDS and Capability Documents
 - Wartime metrics, threat driven, OPTEMPO dependent drive design
 - PBL
 - Peacetime metrics, resource constrained, incentivize and hold PSI accountable
 - Readiness Reporting
 - Ready For Tasking (RFT US Navy)
 - SORTS
- Different metrics are needed by different systems
 - Systems that operate constantly vs. periodic operation
- Different metrics are needed by different decisionmakers
 - Programmatic, operational, financial
- Different metrics are needed for different purposes

OSD SUSTAINMENT METRICS

- Materiel Availability
- Materiel Reliability
- Ownership Cost
- Mean Downtime

Purpose??

- Influence design
- Track performance
- Manage Programs
- Motivate behavior
- Fix accountability
- Compare systems
- Perform analysis
- Report Status

REST OF THE BRIEFING

- "Number One" Rule for establishing *any* metrics
- General Concerns
 - Context for Metrics
 - Definitions/equations
 - Strengths and Weaknesses
 - Candidate Metrics
- Fighter Aircraft
 - Metrics to cover full spectrum
- Readiness/Availability
- Linkages of the Metrics
- Summary
- PBL Linkages
- Current KPP Issues

"NUMBER ONE" RULE FOR ESTABLISHING ANY METRICS!

- FIRST, describe or define what you want to measure
 - Verbalize it...draw a picture of it
 - Define the problem
 - Describe the tasks you are required to perform (capabilities)
 - Do not label...don't try to name it first
 - Describe boundary conditions, GR&A, processes
 - Don't jump directly to equations
 - Don't necessarily try make other metrics fit it
 - Detail what you're trying to accomplish and then describe metrics that would let you know when you've accomplished it

FIGHTER AIRCRAFT METRICS - ORD

-Hrs/month -Miles/month -Operating time/month -Steaming days/month

Logistics Footprint (LF) –

measures how much "stuff" is required to support wartime operations

Mission Reliability (MR) – measures effectiveness of mission

- 1. It doesn't break very often,
- 2. When it does break, we can fix it quickly
- 3. We don't have to take a lot of stuff with us to accomplish this

AVAILABILITY

AVAILABILITY MEASURES

Inherent Availability $(A_i) = \frac{MTBF}{MTBF + MTTR}$

Accounts for operating (flying) time and active repair time *only...used in Specs*.

Operational Availability (A_o) = $\frac{\text{MTBF}}{\text{MTBF} + \text{MTTR} + \text{MLDT}}$

Accounts for operating time only...good for systems that operate continuously.

(1) If an aircraft is going to need higher UTE, it will need to have much less DT/FH

(2) If an aircraft is going to keep the same UTE and lower its IT/DT ratio, it can live with higher DT/FH.

DT/FH and Training Sorties

DT/FH and Prob(being Available)

After a 1.5 hour sortie in the morning, there is barely a 60% chance of flying another sortie that day (7 hours after the sortie) for make-ups with DT/FH = 5.

Time after

Deriving DT/FH

- More meaningful metric for Availability
- Can be used to obtain other metrics
- Doesn't have to be "*Flying* Hours", it can be "*Operating* Hours"
- Use a "2-part" Nomogram
- Step-by-step walk through...

GENERAL RELATIONSHIPS

With FH held constant, contractor can impact DT/FH only. When FH are not held constant, MC Rate can "move" without contractor influence.

Now we have the maintenance and the supply contribution to total DT/FH.

DT/FH & MC Rate Nomogram (part 2)

Now, with the DT/FH and the FH/day, we can determine our MC Rate...defined as (Uptime)/(Uptime + Downtime).

DT/FH & MC Rate Nomogram (part 2)

Which Would You Rather Have?

DT/FH Current Fleet 3-Dec-07

#a/c MC FH FH/ac FH/ac/day DT/ac DT/FH	744 6-May 176 0.755 3406 19.35 0.62 182.28 9.42	720 6-Jun 175 0.769 3301 18.86 0.63 166.32 8.82	744 6-Jul 175 0.783 3495 19.97 0.64 161.45 8.08	744 6-Aug 175 0.797 3899 22.28 0.72 151.03 6.78	720 6-Sep 175 0.777 3068 17.53 0.58 160.56 9.16	744 6-Oct 175 0.782 3761 21.49 0.69 162.19 7.55	720 6-Nov 174 0.792 3286 18.89 0.63 149.76 7.93	744 6-Dec 174 0.803 3207 18.43 0.59 146.57 7.95	744 7-Jan 174 0.794 3309 19.02 0.61 153.26 8.06	672 7-Feb 174 0.772 3393 19.50 0.70 153.22 7.86	744 7-Mar 174 0.787 3872 22.25 0.72 158.47 7.12	720 7-Apr 174 0.787 3476 19.98 0.67 153.36 7.68	744 7-May 174 0.751 3755 21.58 0.70 185.26 8.58	720 7-Jun 173 0.72 4167 24.09 0.80 201.60 8.37	744 7-Jul 173 0.75 3940 22.77 0.73 186.00 8.17	744 7-Aug 170 0.733 4437 26.10 0.84 198.65 7.61	720 7-Sep 168 0.751 3078 18.32 0.61 179.28 9.79	744 7-Oct 165 0.769 3602 21.83 0.70 171.86 7.87	AVG 0.77 MC 3580.67 FH 20.68 FH/ac 0.68 FH/ac/day 167.84 DT/ac 8.16 DT/FH
#a/c MC FH FH/ac FH/ac/day DT/ac DT/FH	744 6-May 87 0.761 3934 45.22 1.46 177.82 3.93	720 6-Jun 87 0.749 3730 42.87 1.43 180.72 4.22	744 6-Jul 86 0.763 3620 42.09 1.36 176.33 4.19	744 6-Aug 87 0.751 3748 43.08 1.39 185.26 4.30	720 6-Sep 87 0.737 2742 31.52 1.05 189.36 6.01	744 6-Oct 87 0.774 3444 39.59 1.28 168.14 4.25	720 6-Nov 87 0.735 3076 35.36 1.18 190.80 5.40	744 6-Dec 87 0.713 3796 43.63 1.41 213.53 4.89	744 7-Jan 87 0.732 3762 43.24 1.39 199.39 4.61	672 7-Feb 87 0.712 3454 39.70 1.42 193.54 4.87	744 7-Mar 87 0.781 4564 52.46 1.69 162.94 3.11	720 7-Apr 87 0.841 3752 43.13 1.44 114.48 2.65	744 7-May 87 0.732 3620 41.61 1.34 199.39 4.79	720 7-Jun 87 0.77 4148 47.68 1.59 165.60 3.47	744 7-Jul 87 0.708 3448 39.63 1.28 217.25 5.48	744 7-Aug 85 0.725 4154 48.87 1.58 204.60 4.19	720 7-Sep 85 0.75 3072 36.14 1.20 180.00 4.98	744 7-Oct 83 0.742 3790 45.66 1.47 191.95 4.20	AVG 0.75 MC 3658.56 FH 42.30 FH/ac 1.39 FH/ac/day 183.95 DT/ac 4.42 DT/FH

DT/FH is a more informative/meaningful Metric!

DISCUSSIONS ON COMPARISONS

- To compare MC rates on different aircraft is risky
 - Driven by tempo (UTE)
 - Holding tempo (UTE) constant for both aircraft is not realistic...PLUS, this just reduces to comparing Ao
 - MC is a function of too many variables
- To compare Ao is also dangerous
 - The many users (across services) rejected using Ao as a measure of readiness/availability because it doesn't reflect tempo
- Better measure is a combination of measures (KPPs)
- We should encourage a comparison based on basic measures Reliability, maintainability, MMH/FH

LINKAGE OF MEASURES

LRIP I PBL METRICS

Air System PBL Metrics

- Readiness/Availability
 - Aircraft Availability (MC)

Propulsion PBL Metrics

- Engine Not Mission Capable Supply (E-NMCS)
- Engine Not Mission Capable Maintenance (E-NMCM)
- Time on Wing (T.O.W)

- Mission Effectiveness (ME)
- Sorties & FH Flown
 - PSF
 - PFHF
- Log Footprint (LFD)
- Military (Logistics) Level of Effort
 - CANSPTFH
 - MMH/FH (aggregate)
 - MMH/FH (subsystem)

- Engine Mission Abort Rate
- N/A for LRIP I

- CANSPTFH
- MMH/FH (propulsion system)

CURRENT KPP ISSUES

- KPPs for development vs. PBA/PBL metrics for sustainment
 - KPPs capabilities in wartime (modeled as "what we can expect")
 - PBA/PBL actual performance in peacetime (what was achieved not modeled)...tracking 24/7 status
 - Not sure why we have to have SAME metrics throughout Life Cycle...as long as they're linked and trackable.
- Purpose of PBL pay for *usage*...not *breakage*.
 - Accountability and incentivization for improvement
 - NOT to be used to verify ORD compliance
 - NOT a substitute for OT&E
- Availability/readiness (peacetime vs. wartime)
 - Key is how to account for "idle time".
- Contract for "cost"..."cost" is not a metric.

WHAT DO YOU WANT KPPs TO MEASURE?...describe, not label

- Drive the design towards for *wartime capability*:
 - How much operational usage I need or can get (maximize).
 - How often it breaks (minimize).
 - How long it takes return it to "up" status (minimize).
 - How much stuff it takes to support it (minimize).
- Track to PBL *peacetime performance*:
 - Structure for diagnosis and remediation...incentivization.
 - How much time available/ready (maximize).
 - How effective was its operation (maximize).
 - What level of effort it took to support (minimize).
 - Did we get the required usage.
 - Are we getting adequate performance for \$/usage.
- Report Status Fleet Readiness Reporting
 - Is the "unit" ready.
 - Does the inventory meet the allotment.

Ultimately, metrics are used to inform decisions!!! The question is...what are the decisions?