Should a Center for Green Innovation and Technology for the Automotive Industry have an Education and Training Mission?

> David Allen University of Texas at Austin

Should a Center for Green Innovation and Technology have an Education and Training Mission?

- What topics would the education and training address?
- Do education and training programs like this already exist?
- What are best practices?

Benchmarking Sustainable Engineering Education (BSEE)

How are engineering programs around the U.S. implementing sustainability into curricula?

Benchmarking process

- Contact more than 1500 department chairs and program heads
- Based on information from department heads, and other contacts, identify more than 350 sustainable engineering faculty champions
- Sustainability champions described 155 courses

Categories of courses and role in the curriculum

Who takes the courses?

- Sustainable engineering: mixed upper division and graduate
- Traditional engineering: upper division
- Cross/Inter-disciplinary: often graduate
- Sustainable engineering technology: mixed upper division and graduate

Overall synthesis

 A student in an engineering course covering sustainability is most likely to be an upper division undergraduate or graduate student taking a stand alone course that is not part of a formal sequence

What's in these courses?

A structure for categorizing content

What system sizes are covered in courses?

. The entries report the number of courses and, in parentheses, the percentage of the courses covered in the survey Maximum values for each system size (within 2 percent points) are shaded to indicate tendencies.

System Size	Portion of Total Course Content				
	Some*	none	Small (1-10%)	Moderate (10-50%)	Significant >50%
Gate to Gate	27	19 (19%)	31 (32%)	38 (39%)	10 (10%)
Cradle to Grave	15	26 (24%)	35 (32%)	37 (34%)	12 (11%)
Inter-Industry Interactions (Industrial Symbiosis)	10	62 (54%)	25 (22%)	28 (24%)	0
Extra-Industry	11	62 (54%)	33 (29%)	19 (17%)	0

* Percentage of course content not specified by respondent, but topics within this system size were covered

Conclusions

- Including sustainable engineering concepts into engineering programs is becoming widely accepted (80% of top 100 engineering programs are doing something)
- Wide range of content
- Some common elements:
 - Life cycle methods
 - Green materials
 - Recycling and reuse
 - Integration into product and process design

More details available at:

http://www.csengin.org/

Murphy, C., D.T. Allen, B. Allenby, J. Crittenden, C. Davidson, C. Hendrickson and S. Matthews "Sustainability in Engineering Education and Research at U.S. Universities" *Environmental Science and Technology (Feature and cover article)*, 43, 5558-5564 (2009).

Allen, D.T., C.F. Murphy, B. Allenby and C. Davidson, "Incorporating Sustainability in Chemical Engineering Education, *Chemical Engineering Progress*, 105 (1) 47-53 (2009).