| Side Impact Occupant Safety and CAE | ||||||||||||||||||||||||
| I.D. # | C0717 | Duration | 2 Days | |||||||||||||||||||||
Side impact crashes account for approximately twenty-four percent of all motor vehicle fatal crashes, second only to frontal crashes, according to a 2005 report by the National Highway Transportation and Safety Administration (NHTSA). While car companies and suppliers continue to develop new technologies that make vehicles safer, NHTSA is also updating safety regulations (FMVSS 214) based on new research studies, making vehicle safety design more and more complex. This seminar is designed to familiarize participants with the engineering principles behind vehicle and restraint designs for occupant safety. Students will learn the mechanics of side crashes and how vehicle structures, restraint systems, and interiors affect occupant safety. Students will also be exposed to system, subsystem and component level CAE and testing tools used in the simulation of side impacts. Accident crash statistics, biomechanics, government regulations and public domain frontal safety tests will also be covered. A combination of hands-on activities, including computer simulations, discussion, and lecture are used throughout the course. A camera that takes slow-motion movies at up to 1,000 frames per second is employed to capture the miniature Side Impact Crash Demo Test kit on day one, which enables the registrants to thoroughly analyze the crash impact. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 12 Continuing Education Units (CEUs). Upon completion of this seminar, accredited reconstructionists should contact ACTAR, 800-809-3818, to request CEUs. As an ACTAR approved course, the fee for CEUs is reduced to $5.00. | ||||||||||||||||||||||||
| Learning Objectives | ||||||||||||||||||||||||
By attending this seminar, you will be able to:
| ||||||||||||||||||||||||
| Who Should Attend | ||||||||||||||||||||||||
| This course is designed for engineers who are new to the field of occupant protection in side impacts as well as those individuals who require knowledge regarding IIHS side impact ratings and the upcoming new FMVSS 214 regulation. This course will also be of interest to engineers who deal with side impact issues or are involved in designs of side impact related components, such as airbags, door trim, side impact bolsters, door structures and body structures. | ||||||||||||||||||||||||
| Prerequisites | ||||||||||||||||||||||||
| An undergraduate engineering degree or a strong technical background is highly recommended. Participants should have a basic working knowledge of Microsoft Excel. | ||||||||||||||||||||||||
| Seminar Content | ||||||||||||||||||||||||
DAY ONE
| ||||||||||||||||||||||||
| Instructor(s): | Stephen Kang and Zhibing Deng | |||||||||||||||||||||||
| Dr. Stephen Kang is currently a Technical Specialist in the Safety Core and Strategy Department of Ford Motor Company where he is responsible for developing safety methods such as component test methods, CAE methods and best practices. He was responsible for developing a truck program from beginning to production launch, and for meeting safety requirements. Dr. Kang has conducted occupant safety and CAE trainings; designed and conducted extensive dynamic component tests; established several Ford internal component design requirements and is responsible for the establishment of an Occupant CAE database at Ford. Dr. Kang is the recipient of the Henry Ford Technology Award in 2005. He serves as an Advisory Board Member for TNO North America and is a certified six-sigma black belt. Dr. Kang has a Ph.D. in Biomechanics from Wayne State University.
Dr. Zhibing Deng is currently a senior engineer specializing in side impact safety at Ford Motor Company. He has in-depth knowledge of side impact development, including setting targets for key vehicle components, developing & applying component/subsytem test methodologies, and implementing actural designs of vehicle components in achieving side impact performance targets. His work experience includes rear impact development and CAE support in front impact, roof crush and interior head impact. Prior to joining Ford, Dr. Deng was an Assistant Professor at South China University of Technology. He is a recipient of the Henry Ford Technology Award in 2005. Dr. Deng received a B.S. in Computational Mathematics and an M.S. in Applied Mathematics in China and a M.S. in Mechanical Engineering, M.A. in Statistics and Ph.D. in Applied Mathematics all from Wayne State University. | ||||||||||||||||||||||||
| Fees: | $1355 | SAE Members*: | $1085 - $1225 | |||||||||||||||||||||
| * The appropriate SAE Member discount will be applied through the Registration process. Discounts vary according to level of membership: Elite Member 20%; Premium Member 15%; Classic Member 10% | ||||||||||||||||||||||||
| CEU | 1.3 | |||||||||||||||||||||||