MOTORCYCLE HANDLING AND

 CHASSIS DESIGN the art and science
List of Chapters:

1 Function and history
Some basic definitions
Function
History
Front suspension
Rear suspension
Spring types
Load Compensation
2 Tyres
Weight support
Suspension action
Tyre stiffness or spring rate
Contact area
Area when cornering
Friction (grip)
Braking \& driving
Cornering
Mechanisms of grip
Under- and over-steer
Construction
Materials
Summary
3 Geometric considerations
Basic motorcycle geometry
Trail
Rake or castor angle (steering axis inclination)
Wheelbase
Wheel diameter
Other considerations
Angular motions
4 Balance and steering
Balance
Steering
Gyroscopic effects only
Gyroscopic with tyre camber force only
Gyroscopic with tyre camber and steer forces
Tyre forces only - no gyroscopic effects
Body lean only - no steering
Conclusions
5 Aerodynamics
Drag
Evolution of the racing fairing

Internal air flow
Lift
Airflow evaluation
Side wind stability (traditional view)
Steady state directional stability
Dynamic directional stability
Summary
6 Suspension principles
Springs
Damping
Sprung and unsprung mass
Basic suspension principles
Other factors
Lateral suspension
Summary
7 Front suspension
Head stock mounted forks
Alternatives to the head stock
mounted fork
Hub centre steered
Double link
McPhearson strut based
Virtual steering axis
8 Rear suspension
Effective spring rate
Chain effects
Wheel trajectory
Structural
Single or dual sided
Summary
9 Squat and dive
Load transfer
Squat and dive
Shaft drive
Chain drive
Aerodynamic squat
Braking reaction (rear)
Dive (front)
Dynamic effects
Summary
10 Structural considerations
Fatigue
Structural efficiency
Triangulation

MOTORCYCLE HANDLING AND CHASSIS DESIGN

 the art and scienceBeam frames
Triangulated frames
Tubular backbone
Structural comparison
Fabricated backbone
Monocoque
Structural engine
Conventional multi-tubular
Twin-spar
Other types
Summary
11 Engine Mounting
12 Braking
The basics
Effects of CoG height
Generation of torque
Hardware
Discs
Calipers
Pads
Linked brakes
ABS
13 Materials and properties
Typical properties of some common materials
Frame
Wheels
Fuel tank
Brake discs
Bodywork
14 Stability \& control
Under-/over-steer
High-siding
Stability under braking
Instabilities
Damping
15 Performance measurement
Track side
Laboratory
Strength analysis
Measurement and simulation
Future development
16 Practical frame building
Welding
Distortion
Gussets
Jigging
Tube profiling
Tube types
Tube sizes
Frame finishes

Design layout
17 Case study
Measurement
Main frame

Engine mounting
Results
Material
Swing arm
Forks
Caution
Tuning
18 Future developments
The status quo
Future possibilities
Active suspension
Rheological Fluids
Two wheel drive (2WD)
Two wheel steering (2WS)
Feet-Forward motorcycles. (FF)
Appendices
A1 Experiments with rake and trail
Rake
Trail
Conclusions
Post script
A2 Glossary of terms
A3 Units conversion
A4 Gyroscopic effects
A5 Basic physics of motorcycles
Basic Trigonometry
Units of angle
Velocity
Acceleration
Mass
Momentum
Newton's laws
Force and weight
Moments, couples and torque
Centripetal \& centrifugal force
Addition and resolution of velocities and forces
Work, energy and power
Nomenclature and sign conventions
Normalization
A6 Analysis of mechanisms
A7 CoG and mass distribution of rider
A8 Typical data
Notes

