MOTORCYCLE HANDLING AND CHASSIS DESIGN

the art and science

List of Chapters:

1 Function and history

Some basic definitions

Function

History

Front suspension

Rear suspension

Spring types

Load Compensation

2 Tyres

Weight support

Suspension action

Tyre stiffness or spring rate

Contact area

Area when cornering

Friction (grip)

Braking & driving

Cornering

Mechanisms of grip

Under- and over-steer

Construction

Materials

Summary

3 Geometric considerations

Basic motorcycle geometry

Trail

Rake or castor angle (steering axis

inclination)

Wheelbase

Wheel diameter

Other considerations

Angular motions

4 Balance and steering

Balance

Steering

Gyroscopic effects only

Gyroscopic with tyre camber force only

Gyroscopic with tyre camber and steer

forces

Tyre forces only - no gyroscopic effects

Body lean only - no steering

Conclusions

5 Aerodynamics

Drag

Evolution of the racing fairing

Internal air flow

Lift

Airflow evaluation

Side wind stability (traditional view)

Steady state directional stability

Dynamic directional stability

Summary

6 Suspension principles

Springs

Damping

Sprung and unsprung mass

Basic suspension principles

Other factors

Lateral suspension

Summary

7 Front suspension

Head stock mounted forks

Alternatives to the head stock

mounted fork

Hub centre steered

Double link

McPhearson strut based

Virtual steering axis

8 Rear suspension

Effective spring rate

Chain effects

Wheel trajectory

Structural

Single or dual sided

Summary

9 Squat and dive

Load transfer

Squat and dive

Shaft drive

Chain drive

Aerodynamic squat

Braking reaction (rear)

Dive (front)

Dynamic effects

Summary

10 Structural considerations

Fatigue

Structural efficiency

Triangulation

MOTORCYCLE HANDLING AND CHASSIS DESIGN

the art and science

Beam frames

Triangulated frames

Tubular backbone

Structural comparison

Fabricated backbone

Monocoque

Structural engine

Conventional multi-tubular

Twin-spar

Other types

Summary

11 Engine Mounting

12 Braking

The basics

Effects of CoG height

Generation of torque

Hardware

Discs

Calipers

Pads

Linked brakes

ABS

13 Materials and properties

Typical properties of some common

materials

Frame

Wheels

Fuel tank

Brake discs

Bodywork

14 Stability & control

Under-/over-steer

High-siding

Stability under braking

Instabilities

Damping

15 Performance measurement

Track side

Laboratory

Strength analysis

Measurement and simulation

Future development

16 Practical frame building

Weldina

Distortion

Gussets

Jigging

Tube profiling

Tube types

Tube sizes

Frame finishes

Design layout

17 Case study

Measurement

Main frame

Engine mounting

Results

Material

Swing arm

Forks

Caution

Tuning

18 Future developments

The status quo

Future possibilities

Active suspension

Rheological Fluids

Two wheel drive (2WD)

Two wheel steering (2WS)

Feet-Forward motorcycles. (FF)

Appendices

A1 Experiments with rake and trail

Rake

Trail

Conclusions

Post script

A2 Glossary of terms

A3 Units conversion

A4 Gyroscopic effects

A5 Basic physics of motorcycles

Basic Trigonometry

Units of angle

Velocity

Acceleration

Mass

Momentum

Newton's laws

Force and weight

Moments, couples and torque

Centripetal & centrifugal force

Addition and resolution of velocities and

forces

Work, energy and power

Nomenclature and sign conventions

Normalization

A6 Analysis of mechanisms

A7 CoG and mass distribution of rider

A8 Typical data

Notes

