Contents

Preface

CHAPTER 1

1.1 Introduction
1.1.1 Current and Planned GNSS Constellations
1.1.2 GNSS User Architectures
1.1.3 Current GNSS Applications
1.1.4 Positioning Performance Measures
1.2 GNSS Signal Improvements
1.2.1 Additional GPS Frequencies
1.2.2 Higher Accuracy Ranging
1.2.3 Longer Ranging Codes
1.2.4 Higher Transmit Power Levels
1.3 Advanced Receiver Technology
1.3.1 Conventional Receivers
1.3.2 FPGA-Based Receivers
1.3.3 Software-Defined GNSS Receivers
1.4 Road Map: How To Use This Book
1.5 Further Reading
References

CHAPTER 2

GNSS Signal Acquisition and Tracking
2.1 Introduction
2.2 GNSS Signal Background
2.2.1 BOC Signal Modulation
2.2.2 PRN Codes
2.3 Searching for PSK Signals
2.4 Tracking PSK Signals
2.4.1 Phase-Locked Loop (PLL)
2.4.2 Frequency-Locked Loop (FLL)
2.4.3 Delay-Locked Loop (DLL)
2.5 Searching for BOC Signals
Contents

2.6 Tracking BOC Signals 42
 2.6.1 BOC Tracking Using a Single Sideband (SSB) 44
 2.6.2 BOC Tracking with Multiple-Gate Discriminators (MGD) 44
 2.6.3 BOC Tracking with the Bump-Jumping (BJ) Algorithm 46
 2.6.4 BOC Tracking with the Dual Estimator (DE) 48
References 53

CHAPTER 3

GNSS Navigation: Estimating Position, Velocity, and Time 55

3.1 Overview 55
3.2 Position, Velocity, and Time (PVT) Estimation 56
 3.2.1 Estimating Receiver Position and Clock Bias 56
 3.2.2 Impact of Ionosphere Errors 62
 3.2.3 Impact of Satellite-User Geometry (DOP) 63
 3.2.4 Estimating Receiver Velocity and Clock Drift 64
 3.2.5 Estimating Time 66
 3.2.6 PVT Estimation Using an Extended Kalman Filter (EKF) 67
 3.2.7 Enhanced Accuracy via Carrier Phase Positioning 67
 3.2.8 Error Sources 67
3.3 GNSS Simulator 69
 3.3.1 GNSS Simulator Measurement Details 69
 3.3.2 GNSS Simulator Interface Files 71
 3.3.3 Postprocessing GNSS Simulator Output Files 73
3.4 GNSS Simulator Examples 74
 3.4.1 Example 1: Simple Navigation 74
 3.4.2 Example 2: Traveling Between Destinations 75
 3.4.3 Example 3: Waypoint Navigation Using FlightGear 77
 3.4.4 Example 4: Dual-Frequency Calculation 80
 3.4.5 Example 5: Adding Galileo Satellites 82
 3.4.6 Example 6: Spacecraft-Based Receiver 84
3.5 Summary 84
3.6 Programs and Tools Provided on the DVD 86
References 86

CHAPTER 4

Differential GNSS: Accuracy and Integrity 87

4.1 Introduction to DGNSS 87
4.2 Fundamentals of Differential GNSS 87
 4.2.1 Error Sources and Degree of Spatial Correlation 89
 4.2.2 Local Versus Regional DGNSS Corrections and DGNSS Networks 93
 4.2.3 Means of Distributing DGNSS Corrections 94
 4.2.4 Managing the Latency of DGNSS Corrections 96
4.3 DGNSS Integrity Threats and Mitigations 97
 4.3.1 Integrity Threats from GNSS Faults 98
4.3.2 Integrity Threats from DGNSS System Faults 108
4.3.3 Integrity Threats from Signal Propagation Anomalies 109
4.4 Summary 114
4.5 Data Provided on the DVD 115
References 115

CHAPTER 5
A GPS Software Receiver 121

5.1 Introduction and Background 121
5.2 License, Development Environments, and Tools 122
 5.2.1 License 122
 5.2.2 GNU/Linux 122
 5.2.3 Microsoft Windows 123
 5.2.4 Apple Mac OS X 123
 5.2.5 Displaying the Receiver Output 123
5.3 Example Data Sets 123
 5.3.1 Data Set 1 124
 5.3.2 Data Set 2, for Use with WAAS Corrections Data 124
5.4 Using the fastgps Software Receiver 124
 5.4.1 Configuration File 124
 5.4.2 Output Files 130
5.5 fastgps Software Receiver Architecture 131
 5.5.1 Timing and Clock Management 132
 5.5.2 Main Processing Loop 133
 5.5.3 Acquisition 133
 5.5.4 Tracking 136
 5.5.5 Navigation 142
5.6 Suggested Future Improvements 145
5.7 Further Reading 146
References 146

CHAPTER 6
Integration of GNSS and INS: Part 1 149

6.1 Introduction 149
6.2 Inertial Navigation 150
 6.2.1 Inertial Sensors 150
 6.2.2 Coordinate Frames 151
 6.2.3 Mechanization Equations 152
 6.2.4 System Initialization 157
 6.2.5 INS Error Model 157
6.3 GNSS/INS Integration Concepts 159
 6.3.1 Motivation for GNSS/INS Integration 159
 6.3.2 Integration Architecture Overview 160
 6.3.3 Loose GNSS/INS Integration 160
 6.3.4 Tight GNSS/INS Integration 162
 6.3.5 Deep GNSS/INS Integration 164
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 Filtering/Estimation Algorithms</td>
<td>165</td>
</tr>
<tr>
<td>6.4.1 Overview of Extended Kalman Filter (EKF) for GNSS/INS</td>
<td>165</td>
</tr>
<tr>
<td>6.4.2 Time Evolution of a GNSS/INS System</td>
<td>168</td>
</tr>
<tr>
<td>6.5 GNSS/INS Integration Implementation</td>
<td>169</td>
</tr>
<tr>
<td>6.5.1 IMU Sensor Error Models</td>
<td>169</td>
</tr>
<tr>
<td>6.5.2 GNSS/INS Integration: Step-by-Step</td>
<td>172</td>
</tr>
<tr>
<td>6.6 Practical Considerations</td>
<td>172</td>
</tr>
<tr>
<td>6.6.1 Lever Arm</td>
<td>173</td>
</tr>
<tr>
<td>6.6.2 Timing Requirements</td>
<td>173</td>
</tr>
<tr>
<td>6.7 Summary and Further Reading</td>
<td>174</td>
</tr>
<tr>
<td>References</td>
<td>175</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td></td>
</tr>
<tr>
<td>Integration of GNS and INS: Part 2</td>
<td>177</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>7.2 Case Study 1: Low-Cost GNSS/INS Integrated Navigator</td>
<td>177</td>
</tr>
<tr>
<td>7.3 Case Study 2: Vehicle Sideslip Estimation</td>
<td>181</td>
</tr>
<tr>
<td>7.3.1 Motivation</td>
<td>181</td>
</tr>
<tr>
<td>7.3.2 Observability</td>
<td>184</td>
</tr>
<tr>
<td>7.4 Case Study 3: INS To Aid High-Accuracy GNSS</td>
<td>186</td>
</tr>
<tr>
<td>7.4.1 GNSS Ambiguity-Resolution Overview</td>
<td>187</td>
</tr>
<tr>
<td>7.4.2 Benefits of INS to Ambiguity Resolution</td>
<td>188</td>
</tr>
<tr>
<td>7.5 Software Examples</td>
<td>189</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td></td>
</tr>
<tr>
<td>Integrated LADAR, INS, and GNSS Navigation</td>
<td>191</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>8.2 LADAR-Based TERRAIN Integration Methodology</td>
<td>192</td>
</tr>
<tr>
<td>8.3 LADAR-Based Terrain-Referenced Position Estimation</td>
<td>196</td>
</tr>
<tr>
<td>8.3.1 Position Estimate and SSE Surface</td>
<td>196</td>
</tr>
<tr>
<td>8.3.2 Exhaustive Grid Search</td>
<td>198</td>
</tr>
<tr>
<td>8.3.3 Gradient-Based Search</td>
<td>200</td>
</tr>
<tr>
<td>8.4 Estimation of Inertial Velocity Error</td>
<td>202</td>
</tr>
<tr>
<td>8.5 Case Studies of TERRAIN System Performance</td>
<td>202</td>
</tr>
<tr>
<td>8.5.1 Case Study I—General Positioning System</td>
<td>202</td>
</tr>
<tr>
<td>8.5.2 Case Study II—Precision Approach Guidance System</td>
<td>205</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td></td>
</tr>
<tr>
<td>Combining GNSS with RF Systems</td>
<td>211</td>
</tr>
<tr>
<td>9.1 Location System Alternatives</td>
<td>211</td>
</tr>
<tr>
<td>9.2 RF Location Types and Classifications</td>
<td>213</td>
</tr>
<tr>
<td>9.2.1 Location by Proximity</td>
<td>214</td>
</tr>
<tr>
<td>9.2.2 Location by Radio Direction Finding (DF) and Angle of Arrival (AOA)</td>
<td>217</td>
</tr>
</tbody>
</table>
Contents

9.2.3 Location Using Doppler Frequency 219
9.2.4 Location Estimation Using Signal Strength 221
9.2.5 Location Using Time, Phase, and Differential Timing of Arrival (TOA, POA, and TDOA) 223

9.3 Estimation Methods 226
9.3.1 Deterministic Estimation Using Triangulation 226
9.3.2 Deterministic Estimation Using Nearest Neighbor 229
9.3.3 Nonranging-Based Location Estimation 231
9.3.4 Probabilistic Estimation Using Centroid/Center of Mass 232
9.3.5 Bayesian State Estimation 232

9.4 Integration Methods 234
9.4.1 Least-Squares Integration 234
9.4.2 Kalman Filter Integration 235
9.4.3 Contextual Processing 235

9.5 Example Systems 235
9.5.1 Pseudolites 235
9.5.2 Synchrolites 237
9.5.3 Self-Synchronizing Networks 237
9.5.4 GPS and Relative Navigation 238
9.5.5 TV-Based Location 238
9.5.6 Integration of Cellular Location Systems and GNSS 239

9.6 Examples Included on the DVD 240
9.6.1 RF Antennas 240
9.6.2 Doppler Calculations 240
9.6.3 K-Nearest Neighbor Plot 241

9.7 Further Reading 241
References 241

CHAPTER 10
Aviation Applications 245

10.1 Introduction 245
10.2 Classes of Aviation Augmentation Systems 245
10.3 Benefits of GPS and Augmentations to Aviation Users 247
10.3.1 Oceanic Flight 247
10.3.2 Overland Flight: En Route, Terminal, and Nonprecision Approach 248
10.3.3 Precision Approach and Landing 248
10.4 Future of GNSS Navigation in Aviation 249
10.4.1 GNSS Modernization 249
10.4.2 Next-Generation Air Traffic Management System (NextGen) 251
10.4.3 Backup Navigation Capabilities for Aviation 251
10.5 Functionality of Aviation Augmentation Systems 252
10.5.1 Augmentation System Performance Requirements 252
10.5.2 Error Bounding Under Nominal Conditions 253
10.5.3 Error Bounding Under Anomalous Conditions 257
10.5.4 Monitoring 261
10.6 Conclusion 264
10.7 Further Reading 265
References 265

CHAPTER 11
Integrated GNSS and Loran Systems 269
11.1 Introduction 269
11.2 Loran Overview
 11.2.1 Loran-C 269
 11.2.2 eLoran 271
11.3 Theory of Operation 272
11.4 Historical Reasons for GNSS/Loran Integration 275
11.5 Integration Scenarios
 11.5.1 Position-Domain Integration 276
 11.5.2 Range-Domain Integration 278
 11.5.3 Déjà Vu Navigation: A Case Study of Range-Domain Integration 281
 11.5.4 Integrity with Range-Domain Integration 283
 11.5.5 Improved Accuracy for Loran Integrity 286
 11.5.6 Tracking Loop Domain Integration 287
11.6 Conclusions 288
References 288

CHAPTER 12
Indoor and Weak Signal Navigation 291
12.1 Introduction 291
12.2 Signal Processing Considerations Related to Weak Signals
 12.2.1 Acquisition of Weak Signals 294
 12.2.2 Clock Stability and Integration Times 295
 12.2.3 Tracking of Weak Signals 296
 12.2.4 Cross-Correlation and Interfering Signals 297
 12.2.5 Multipath Mitigation 298
 12.2.6 Benefits of Future GNSS 300
12.3 Aiding Possibilities and Supportive Systems 300
 12.3.1 Assistance 300
 12.3.2 Supportive Systems for GNSS 301
12.4 Navigation Algorithms for Difficult Signal Conditions
 12.4.1 Constraints on User Motion 304
 12.4.2 Map Matching 305
 12.4.3 Adaptive Algorithms 305
12.5 Quality and Integrity Monitoring
 12.5.1 Introduction to Integrity Monitoring 306
 12.5.2 Reliability Testing 307
 12.5.3 Weighted Least-Squares Notation 308
 12.5.4 Residuals and Redundancy 310
 12.5.5 Global Test 311
14.2.2 Mathematical Models 351
14.2.3 Baseline Processing 356
14.2.4 Network Processing for Positioning 359
14.3 GNSS Ground Infrastructure—Continuously Operating Reference Station (CORS) Networks 360
14.3.1 The IGS Infrastructure 361
14.3.2 National CORS Infrastructure 364
14.4 Surveying and Geodesy Applications and Operational Modes 367
14.4.1 GNSS Surveying 368
14.4.2 GNSS Geodesy 372
14.5 The Future: The Next-Generation GNSS 376
14.5.1 The Benefits of More Satellites and Signals 376
14.5.2 Improvements to the GNSS Infrastructure 377
14.5.3 Applications and the Future 378
References 379

CHAPTER 15
Atmospheric Sensing Using GNSS Occultations 381
15.1 Introduction 381
15.2 Occultation Measurements 382
15.3 Atmospheric Retrievals 384
 15.3.1 Derivation of Bending Angle Profiles 385
 15.3.2 Ionospheric Calibration 387
 15.3.3 Derivation of Atmospheric Profiles 388
15.4 Weather and Climate Applications 390
15.5 Recent Advances 392
15.6 Scripts and Data Included on the DVD 394
15.7 Further Reading 394
References 395

CHAPTER 16
Remote Sensing Using Bistatic GNSS Reflections 399
16.1 Introduction 399
 16.1.1 General Discussion of Traditional Remote Sensing 400
 16.1.2 Remote Sensing Using Reflected GNSS Signals 401
16.2 Reflection Geometry 402
 16.2.1 Estimating the Surface Reflection Point Location 403
 16.2.2 Delay and Doppler Spreading over the Surface 403
16.3 Signal Processing 403
 16.3.1 Detection and Surface Mapping 405
 16.3.2 Averaging Consecutive Correlations 407
 16.3.3 Delay Waveforms and Delay Doppler Maps 408
16.4 Remote Sensing Theory 410
 16.4.1 Bistatic Surface Scattering 410
 16.4.2 The Bistatic Radar Cross Section 413
 16.4.3 Sea Surface Modeling 414
Contents

16.4.4 Bistatic Scattering from Land 416
16.4.5 Bistatic Scattering from Sea Ice 417

16.5 Ocean Altimetry 418
 16.5.1 Motivation 418
 16.5.2 Aircraft Altimetry Measurements 418
 16.5.3 GNSS Ocean Altimetry from Space 420

16.6 Ocean Wind and Wave Sensing 421
 16.6.1 Aircraft Wind and Wave Measurements 421
 16.6.2 Wave Sensing from Spacecraft 423

16.7 GNSS Bistatic Land and Ice Sensing 424
 16.7.1 The History and Applications of GNSS Land Reflections 424
 16.7.2 Spacecraft-Detected Land Reflections 426
 16.7.3 The History and Applications of GNSS Ice Reflections 427
 16.7.4 Spacecraft-Detected Sea Ice Reflections 428

16.8 Data Provided on the DVD 432
 16.8.1 Specular Point Calculation Scripts 432
 16.8.2 Surface Scattering Model 433
 16.8.3 Spacecraft Data and Processing Tools 433

16.9 Further Reading 433
 References 434

CHAPTER 17

New Navigation Signals and Future Systems in Evolution 437

17.1 The History of GNSS 437
 17.1.1 GPS 437
 17.1.2 Modulation of Satellite Carrier Signals 439

17.2 Motivation for Evolution 439
 17.2.1 Main Concept of Operation for Galileo 440

17.3 New Modulation Opportunities 441
 17.3.1 Existing Spreading Symbol—BPSK Modulation 442
 17.3.2 Binary Offset Carrier (BOC) Modulation 445
 17.3.3 Multiplex BOC Modulation 453
 17.3.4 Composite BOC Modulation 455
 17.3.5 Time Multiplex BOC Modulation 457
 17.3.6 Other Spreading Symbol Modulation Options 459
 17.3.7 Alternative BOC (AltBOC) Modulation 461

17.4 Signal Multiplex Techniques 465
 17.4.1 QPSK 466
 17.4.2 Interplex 467
 17.4.3 Other Techniques 468

17.5 Interference 468
 17.5.1 Performance Metrics 470
 17.5.2 Spectral Separation Coefficients (SSC) 473

17.6 Listing of Proposed Systems and Signal Characteristics 478
 17.6.1 Global CDMA Satellite Navigation Systems I: GPS 479
 17.6.2 Global CDMA Satellite Navigation Systems II: Galileo 480
 17.6.3 Global CDMA Satellite Navigation Systems III: COMPASS 481
17.7 Summary 482
 References 483

 About the Editors 485
 About the Contributors 485

Index 491