A highly useful resource for professionals and students alike, this cutting-edge, first-of-its-kind book provides a thorough introduction to nanoscale communication networks. Written in a clear tutorial style, this volume covers a wide range of the most important topics in the area, from molecular communication and carbon nanotube nanonetworks to nanoscale quantum networking and the future direction of nanonetworks. Serving as an excellent textbook for related courses, this book features numerous exercise problems at the end of each chapter to ensure a solid understanding of the material.

Contents Overview:
- Towards Nanonetworks
- Molecular Motor Communication
- Gap Junction and Cell Signaling
- Carbon Nanotube-Based Nanonetworks
- Nanoscale Quantum Networking
- Information Theory and Nanonetworks
- Architectural Questions
- Nanoscale and Molecular Communication Network Simulation Tools

Stephen F. Bush is a senior scientist at the General Electric Global Research Center and has been the principal investigator for many DARPA and Lockheed Martin sponsored research projects. He also teaches quantum computing and communications at Rensselaer Polytechnic Institute and computer communications networking at The State University of New York. Dr. Bush is the chair of the IEEE Emerging Technologies Committee on Nanoscale, Molecular, and Quantum Networking. He holds a B.S. in electrical and computer engineering from Carnegie Mellon University, an M.S. in computer and information science from Cleveland State University, and a Ph.D. in electrical and computer engineering from the University of Kansas.
Contents

Preface xiii
Acknowledgments xvii

Chapter 1 Towards Nanonetworks 1
1.1 Brief Historical Context 1
1.2 Nanorobotics 3
1.3 Definition of Nanonetworks 3
 1.3.1 Requirements to be a nanonetwork 4
 1.3.2 Driving forces behind nanoscale networking 5
 1.3.3 Defined in relation to sensor networks 7
1.4 Review of Nanotechnology Related to Communications 9
 1.4.1 Nanotechnology for high-frequency classical wireless transmission 9
 1.4.2 System-on-chip 11
1.5 Today’s Sensor Networks 13
 1.5.1 Wireless sensor networks 13
 1.5.2 Antenna 14
1.6 Relationship Between Physics and Information 15
 1.6.1 Physical entropy 16
 1.6.2 Thermodynamics 18
 1.6.3 Physics of information 19
 1.6.4 A brief introduction to quantum phenomena 20
1.7 Need for Self-Assembly 22
 1.7.1 Self-assembly for nanotube alignment 22
 1.7.2 Self-assembly, complexity, and information theory 23
Chapter 1 Nanoscale Communication Networks

1.7.3 Active networking at the nanoscale 24
1.8 Need for Nanoscale Information Theory 25
 1.8.1 Capacity of networks 25
1.9 Summary 26
1.10 Exercises 26

Chapter 2 Molecular Motor Communication 31

2.1 Molecular Motors on Rails 32
 2.1.1 Where molecular motors are found and used in nature 32
 2.1.2 Random walk and Brownian motion 35
 2.1.3 Molecular motor operation: The mechanics of walking 41
2.2 Thermodynamics of Molecular Motors 42
2.3 Microtubules 45
 2.3.1 Topology and persistence length 46
 2.3.2 Towards routing and the ability to steer molecular motors 48
2.4 Interfacing with Molecular Motors 49
2.5 Motor Velocity, Reliability, and Bandwidth-Delay Product 49
 2.5.1 Automatic repeat request and reliable molecular motor communication channels 50
 2.5.2 Genetic communication and error correction 51
2.6 Information Theory and Molecular Motor Payload Capacity 53
 2.6.1 Payload and information capacity 53
 2.6.2 DNA computing for nanoscale communication 54
2.7 Other Types of Motors 55
 2.7.1 Flagellar motors 57
 2.7.2 Synthetic DNA motors 57
 2.7.3 Catalytic motors 58
2.8 Summary 58
2.9 Exercises 58

Chapter 3 Gap Junction and Cell Signaling 63

3.1 Introduction 64
 3.1.1 Calcium signaling in nature 65
 3.1.2 Gap junction signaling 66
 3.1.3 Intercell signaling 66
3.1.4 Long-distance nanoscale biological signaling 67
3.2 Gap Junctions 68
 3.2.1 Liposomes: artificial containers 68
3.3 Cell Signaling 69
 3.3.1 Network coding 70
3.4 Modeling Biological Signal Propagation and Diffusion 72
 3.4.1 Information concentration and propagation distance 72
 3.4.2 Calcium waves 74
 3.4.3 Calcium stores and relays 75
 3.4.4 Gene and metabolic communication networks 82
3.5 Olfactory and Other Biological Communication 83
 3.5.1 Memristors 83
 3.5.2 Quorum sensing 84
 3.5.3 Pheromone communication models and analysis 86
 3.5.4 Neuronal communication 86
3.6 Information Theoretic Aspects 87
 3.6.1 Stochastic resonance 87
 3.6.2 Towards human-engineered nanoscale biological communication networks 88
3.7 Summary 88
3.8 Exercises 89

Chapter 4 Carbon Nanotube-Based Nanonetworks 93
4.1 Introduction 94
 4.1.1 Comparison with microtubules 95
 4.1.2 Nanotubes and biology 96
4.2 Nanotubes as Field Effect Transistors 97
 4.2.1 Electron transport 98
4.3 Nanotubes and Quantum Computing 98
4.4 A Single Carbon Nanotube Radio 100
4.5 Nanotubes and Graph Theory 102
 4.5.1 Eigensystem network analysis 102
4.6 Nanotubes and Self-Assembly 106
 4.6.1 Active networking 106
 4.6.2 Nanoscale active networking and routing 107
4.7 Semirandom Carbon Nanotube Networks 108
 4.7.1 Characteristics of a semirandom nanotube network 112
 4.7.2 Data transmission in a semirandom nanotube network 116
 4.7.3 Routing in a semirandom nanotube network 118
4.8 Summary 122
4.9 Exercises 122

Chapter 5 Nanoscale Quantum Networking 125
5.1 Introduction 125
 5.1.1 The nature of quantum networks 125
 5.1.2 Forms of quantum networking 128
5.2 Primer on Quantum Computation 128
 5.2.1 What is quantum mechanics? 130
 5.2.2 The nature of qubits 131
 5.2.3 Postulate one 132
 5.2.4 Postulate two 134
 5.2.5 Measuring a qubit 135
 5.2.6 Postulate three 136
 5.2.7 Postulate four 137
 5.2.8 The tensor product 138
5.3 Quantum Entanglement 139
 5.3.1 Superdense coding 140
 5.3.2 Measurement of composite quantum states 142
 5.3.3 The Bell inequality 143
 5.3.4 Quantum cryptography example 145
5.4 Teleportation 146
 5.4.1 The spectral theorem 149
 5.4.2 An alternative form of postulate two 150
 5.4.3 Building a quantum communication network 151
 5.4.4 Sharing entanglement in a quantum network 152
 5.4.5 Quantum wire 154
5.5 Summary 158
5.6 Exercises 158

Chapter 6 Information Theory and Nanonetworks 163
Chapter 6: Information Theory Primer

6.1 Information Theory Primer

6.1.1 Compression and the nature of information

6.1.2 Basic properties of entropy

6.1.3 Reliable communication in the presence of noise

6.1.4 Shannon versus Kolmogorov: Algorithmic information theory

6.1.5 Minimum description length and sophistication

6.2 Quantum Information Theory

6.2.1 Quantum information

6.2.2 The limits of accessible information in a network

6.3 A Few Words on Self-Assembly and Self-Organizing Systems

6.3.1 Random nanotube networks, carbon nanotube radios, and information theory

6.4 Molecular Communication Theory

6.4.1 Brownian motion and order statistics

6.4.2 Concentration encoding

6.4.3 A single nanoscale molecular channel

6.4.4 A multiple-access nanoscale molecular channel

6.4.5 A broadcast nanoscale molecular channel

6.4.6 A relay nanoscale molecular channel

6.5 Summary

6.6 Exercises

Chapter 7: Architectural Questions

7.1 Introduction

7.1.1 The definition of an architecture

7.2 Architectural Properties Derived from a Finite Automata Model

7.3 Applying Lessons from Outer Space to Inner Space

7.3.1 Routing with Brownian motion

7.3.2 Localization in outer space

7.3.3 Localization in inner space

7.4 Architecture of Extant In Vivo Wireless Systems

7.5 Active Network Architecture

7.5.1 The active network framework

7.5.2 Properties of execution environments

7.5.3 Active networks and self-healing
7.5.4 Complexity and evolutionary control 213
7.5.5 The application of a complexity measure in a communication network 214
7.5.6 Genetic network programming architecture 215
7.6 Carbon Nanotube Network Architectures 217
 7.6.1 Random carbon nanotube network architecture 217
 7.6.2 Single carbon nanotube radio architecture 218
7.7 The Quantum Network Architecture 219
 7.7.1 Quantum entanglement purification 219
 7.7.2 Quantum network architecture 222
7.8 Summary 223
7.9 Exercises 224

Chapter 8 Conclusion 227
8.1 Olfactory Communication 228
 8.1.1 Towards odor communication 228
 8.1.2 The odor receiver: The electronic nose 229
 8.1.3 Pheromone impulse response 233
 8.1.4 Towards an olfactory transmitter 236
8.2 An Internet of Nanoscale Networks 239
8.3 Optical Transmission Within Nanoscale Networks 241
 8.3.1 Fluorescence resonance energy transfer 241
 8.3.2 Electroluminescence 242
 8.3.3 Molecular switches 243
8.4 Internetworking Nanoscale Networks 243
 8.4.1 The design of an in vivo nanoscale network 244
8.5 Nanoscale Network Applications 246
8.6 The Future of Nanonetworks 247
 8.6.1 The IEEE Nano-Scale, Molecular, and Quantum Networking Subcommittee 248
8.7 Exercises 248

Appendix 250

References 263

About the Author 275