Contents

Preface to the Fourth Edition xix
Preface to the Third Edition xxiii
Preface to the Second Edition xxvii
Preface to the First Edition xxix
Foreword to the First Edition xxxi
About the Author xxxiii

Part I Design: Theory and Practice 1

1 An Overview of Gas Turbines 3
 Gas Turbine Cycle in the Combined Cycle or Cogeneration Mode 3
 Gas Turbine Performance 6
 Gas Turbine Design Considerations 11
 Categories of Gas Turbines 15
 Frame Type Heavy-Duty Gas Turbines 16
 Aircraft-Derivative Gas Turbines 30
 Industrial-Type Gas Turbines 39
 Small Gas Turbines 42
 Vehicular Gas Turbines 44
 Microturbines 50
 Major Gas Turbine Components 51
 Compressors 51
 Regenerators/Recuperators 57
 Fuel Type 59
 Combustors 61
 Environmental Effects 62
 Turbine Expander Section 76
 Radial-Inflow Turbine 76
 Mixed-Flow Turbine 77
 Axial-Flow Turbines 78
 Materials 80
 Coatings 83
 Gas Turbine Heat Recovery 83
 Supplementary Firing of Heat Recovery Systems 85
 Instrumentation and Controls 87
2 Theoretical and Actual Cycle Analyses

<table>
<thead>
<tr>
<th>Cycle Analysis</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Brayton Cycle</td>
<td>89</td>
</tr>
<tr>
<td>Regeneration Effect</td>
<td>92</td>
</tr>
<tr>
<td>Increasing the Work Output of the Simple-Cycle Gas Turbine</td>
<td>95</td>
</tr>
<tr>
<td>Intercooling and Reheating Effects</td>
<td>95</td>
</tr>
<tr>
<td>Actual Cycle Analysis</td>
<td>98</td>
</tr>
<tr>
<td>The Simple Cycle</td>
<td>98</td>
</tr>
<tr>
<td>The Split-Shaft Simple Cycle</td>
<td>100</td>
</tr>
<tr>
<td>The Regenerative Cycle</td>
<td>101</td>
</tr>
<tr>
<td>The Inter-cooled Simple Cycle</td>
<td>102</td>
</tr>
<tr>
<td>The Reheat Cycle</td>
<td>103</td>
</tr>
<tr>
<td>The Inter-cooled Regenerative Reheat Cycle</td>
<td>105</td>
</tr>
<tr>
<td>The Steam Injection Cycle</td>
<td>105</td>
</tr>
<tr>
<td>The Evaporative Regenerative Cycle</td>
<td>109</td>
</tr>
<tr>
<td>The Brayton–Rankine Cycle</td>
<td>110</td>
</tr>
<tr>
<td>Summation of Cycle Analysis</td>
<td>113</td>
</tr>
<tr>
<td>A General Overview of Combined-Cycle Plants</td>
<td>114</td>
</tr>
<tr>
<td>Compressed Air Energy Storage Cycle</td>
<td>121</td>
</tr>
<tr>
<td>Power Augmentation</td>
<td>122</td>
</tr>
<tr>
<td>Inlet Cooling</td>
<td>122</td>
</tr>
<tr>
<td>Injection of Compressed Air, Steam, or Water</td>
<td>124</td>
</tr>
<tr>
<td>Inlet Cooling Techniques</td>
<td>124</td>
</tr>
<tr>
<td>Evaporative Cooling of the Turbine</td>
<td>124</td>
</tr>
<tr>
<td>Refrigerated Inlets for the Gas Turbines</td>
<td>125</td>
</tr>
<tr>
<td>Combination of Evaporative and Refrigerated Inlet Systems</td>
<td>127</td>
</tr>
<tr>
<td>Thermal Energy Storage Systems</td>
<td>128</td>
</tr>
<tr>
<td>Injection of Compressed Air, Steam, or Water for Increasing Power</td>
<td>128</td>
</tr>
<tr>
<td>Mid-Compressor Flashing of Water</td>
<td>128</td>
</tr>
<tr>
<td>Injection of Humidified and Heated Compressed Air</td>
<td>129</td>
</tr>
<tr>
<td>Combination of Evaporative Cooling and Steam Injection</td>
<td>131</td>
</tr>
<tr>
<td>Summation of the Power Augmentation Systems</td>
<td>132</td>
</tr>
<tr>
<td>Bibliography</td>
<td>137</td>
</tr>
</tbody>
</table>

3 Compressor and Turbine Performance Characteristics

<table>
<thead>
<tr>
<th>Performance Characteristic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerothermodynamics of Turbomachinery</td>
<td>139</td>
</tr>
<tr>
<td>Ideal Gas</td>
<td>140</td>
</tr>
<tr>
<td>Dry- and Wet-bulb Temperatures</td>
<td>144</td>
</tr>
<tr>
<td>Optical and Radiation Pyrometers</td>
<td>148</td>
</tr>
<tr>
<td>Ideal Gas Laws</td>
<td>149</td>
</tr>
<tr>
<td>Compressibility Effect</td>
<td>150</td>
</tr>
<tr>
<td>Aerothermal Equations</td>
<td>153</td>
</tr>
<tr>
<td>Continuity Equation</td>
<td>153</td>
</tr>
<tr>
<td>Momentum Equation</td>
<td>154</td>
</tr>
<tr>
<td>Energy Equation</td>
<td>156</td>
</tr>
</tbody>
</table>
Contents

Efficiencies
 Adiabatic Thermal Efficiency 158
 Polytropic Efficiency 161
Dimensional Analysis 163
Compressor Performance Characteristics 166
 Turbine Performance Characteristics 167
 Gas Turbine Performance Computation 167
Bibliography 176

4 Performance and Mechanical Standards 177
Major Variables for a Gas Turbine Application
 Type of Application 177
 Plant Location and Site Configuration 179
 Plant Type 180
 Gas Turbine Size and Efficiency 180
 Type of Fuel 180
 Enclosures 183
 Plant Operation Mode: Base or Peaking 184
 Start-Up Techniques 184
Performance Standards 184
 ASME PTC 19.1: Test Uncertainty 185
 ASME PTC 19.5: Flow Measurement, Published 2004 186
 PTC 19.10: Flue and Exhaust Gas Analyses, Part 10 187
 ASME PTC 19.11: Steam and Water Sampling, Conditioning, and Analysis in the Power Cycle 187
 ASME PTC 46: Performance Test Code on Overall Plant Performance, Published January 1, 1996 188
 Object and Scope 188
Performance Test Code on Gas Turbines 190
 ASME PTC 22, Published 2006 190
 ASME Measurement of Exhaust Emissions from Stationary Gas Turbine Engines B133.9, Published 1994 190
 ASME PTC 36 Measurement of Industrial Sound (ASME B133.8), Published 2004 191
Mechanical Parameters 191
 ASME B 133.2 Basic Gas Turbines, Published 1977 (Reaffirmed: 1997) 192
 ASME B133.3 Procurement Standard for Gas Turbine Auxiliary Equipment, Published 1981 (Reaffirmed 1994) 192
 ASME B133.4 Gas Turbine Control and Protection Systems, Published 1978 (Reaffirmed: 1997) 192
Contents

<table>
<thead>
<tr>
<th>Standard/Specification</th>
<th>Title</th>
<th>Reaffirmed Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B133.5</td>
<td>Procurement Standard for Gas Turbine Electrical Equipment, Published 1978 (Reaffirmed: 1994)</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>ASME B 133.7M</td>
<td>Gas Turbine Fuels, Published 1985 (Reaffirmed: 1992)</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>ASME B133.8</td>
<td>Gas Turbine Installation Sound Emissions, Published 1977 (Reaffirmed: 1989)</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>ASME B133.9</td>
<td>Measurement of Exhaust Emissions from Stationary Gas Turbine Engines, Published: 1994</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>API Std 613</td>
<td>Special Purpose Gear Units for Petroleum, Chemical, and Gas Industry Services, Fourth Edition, June 1995</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>API Std 614</td>
<td>Lubrication, Shaft-Sealing, and Control-Oil Systems and Auxiliaries for Petroleum, Chemical, and Gas Industry Services, Fourth Edition, April 1999</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Application of the Mechanical Standards to the Gas Turbine</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gears</td>
<td>203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication Systems</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration Measurements</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td>208</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 **Rotor Dynamics**

- Mathematical Analysis
 - Undamped Free System
 - Damped System
 - Forced Vibrations
 - Design Considerations
- Application to Rotating Machines
 - Rigid Supports
 - Flexible Supports
- Critical Speed Calculations for Rotor Bearing Systems

Page 215
Contents

Electromechanical Systems and Analogies 232
 Forces Acting on a Rotor-Bearing System 233
 Rotor-Bearing System Instabilities 236
 Self-Excited Instabilities 239
Campbell Diagram 244
Bibliography 250

Part II Major Components 251

6 Centrifugal Compressors 253
 Centrifugal Compressor Components 254
 Inlet Guide Vanes 260
 Impeller 262
 Inducer 264
 Centrifugal Section of an Impeller 267
 Causes of Slip in an Impeller 269
 Stodola Slip Factor 272
 Stanitz Slip Factor 273
 Diffusers 274
 Scroll or Volute 275
 Centrifugal Compressor Performance 278
 Rotor Losses 279
 Stator Losses 281
 Compressor Surge 283
 Effects of Gas Composition 289
 External Causes and Effects of Surge 290
 Surge Detection and Control 291
 Process Centrifugal Compressors 292
 Compressor Configuration 295
 Impeller Fabrication 298
Bibliography 299

7 Axial-Flow Compressors 303
 Introduction 303
 Blade and Cascade Nomenclature 306
 Elementary Airfoil Theory 309
 Laminar-Flow Airfoils 311
 Energy Increase 313
 Velocity Triangles 313
 Degree of Reaction 315
 Radial Equilibrium 319
 Diffusion Factor 320
 The Incidence Rule 321
 The Deviation Rule 323
Contents

Compressor Operation Characteristics 328
 Compressor Surge 328
Compressor Choke 331
 Compressor Stall 331
 Individual Blade Stall 332
 Rotating Stall 332
 Stall Flutter 333
Compressor Performance Parameters 337
Performance Losses in an Axial-Flow Compressor 340
New Developments in Axial-Flow Compressors 342
Axial-Flow Compressor Research 344
 Cascade Tests 345
 Blade Profile 345
Compressor Blade Material 351
Acknowledgments 354
Bibliography 355

8 Radial-Inflow Turbines 357
Hydraulic Radial-Inflow Turbines 357
Radial-Inflow Turbines for Gas Applications 358
 Turbine Configurations 361
Thermodynamic and Aerodynamic Theory 368
Turbine Design Considerations 374
Performance of a Radial-Inflow Turbine 376
Losses in a Radial-Inflow Turbine 380
Radial-Inflow Turbine Applications 381
Bibliography 383

9 Axial-Flow Turbines 385
Turbine Geometry 385
Thermodynamic and Aerodynamic Theory 387
 Utilization Factor 391
 Degree of Reaction 391
 Work Factor 392
Velocity Diagrams 393
 Zero-Exit Swirl Diagram 393
 Impulse Diagram 394
 Symmetrical Diagram 394
Impulse Turbine 394
Turbine Blade Cooling Concepts 401
 Convection Cooling 405
 Impingement Cooling 405
 Film Cooling 405
 Transpiration Cooling 405
 Water/Steam Cooling 405
10 Combustors

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine Combustors</td>
<td>427</td>
</tr>
<tr>
<td>Typical Combustor Arrangements</td>
<td>429</td>
</tr>
<tr>
<td>Can-Annular and Annular Combustors</td>
<td>429</td>
</tr>
<tr>
<td>Silo-Type Combustors</td>
<td>431</td>
</tr>
<tr>
<td>Combustion in Combustors</td>
<td>431</td>
</tr>
<tr>
<td>The Diffusion-Type Combustor</td>
<td>432</td>
</tr>
<tr>
<td>Air-Pollution Problems in a Diffusion Combustor</td>
<td>443</td>
</tr>
<tr>
<td>Smoke</td>
<td>443</td>
</tr>
<tr>
<td>Oxides of Nitrogen</td>
<td>443</td>
</tr>
<tr>
<td>NO\textsubscript{x} Prevention</td>
<td>445</td>
</tr>
<tr>
<td>Diffusion Combustor Design</td>
<td>448</td>
</tr>
<tr>
<td>The Diffusion Combustor</td>
<td>448</td>
</tr>
<tr>
<td>Flame Stabilization</td>
<td>452</td>
</tr>
<tr>
<td>Combustion and Dilution</td>
<td>452</td>
</tr>
<tr>
<td>Film Cooling of the Liner</td>
<td>453</td>
</tr>
<tr>
<td>Fuel Atomization and Ignition</td>
<td>453</td>
</tr>
<tr>
<td>The Dry Low Emission Combustors</td>
<td>455</td>
</tr>
<tr>
<td>Primary</td>
<td>467</td>
</tr>
<tr>
<td>Lean–Lean</td>
<td>468</td>
</tr>
<tr>
<td>Premix Transfer</td>
<td>468</td>
</tr>
<tr>
<td>Piloted Premix</td>
<td>468</td>
</tr>
<tr>
<td>Premix</td>
<td>469</td>
</tr>
<tr>
<td>Tertiary Full-Speed No Load (FSNL)</td>
<td>469</td>
</tr>
<tr>
<td>Silo-Type Combustors</td>
<td>477</td>
</tr>
<tr>
<td>Operation of DLN/DLE Combustors</td>
<td>479</td>
</tr>
<tr>
<td>Catalytic Combustion and Combustors</td>
<td>481</td>
</tr>
<tr>
<td>Features of Catalytic Combustion</td>
<td>481</td>
</tr>
<tr>
<td>Catalytic Combustor Design</td>
<td>483</td>
</tr>
<tr>
<td>Preburner</td>
<td>484</td>
</tr>
<tr>
<td>Main Fuel Injector</td>
<td>484</td>
</tr>
<tr>
<td>Catalytic Reactor</td>
<td>484</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>487</td>
</tr>
</tbody>
</table>
Part III Materials, Fuel Technology, and Fuel Systems 491

11 Materials 493
 General Metallurgical Behaviors in Gas Turbines 496
 Creep and Rupture 496
 Ductility and Fracture 497
 Cyclic Fatigue 498
 Thermal Fatigue 498
 Corrosion 499
 Gas Turbine Materials 503
 Turbine Wheel Alloys 505
 Compressor Blades 507
 Forgings and Non-destructive Testing 508
 Ceramics 508
 Coatings 509
 Shroud Coatings 513
 Future Coatings 513
 Bibliography 514

12 Fuels 515
 Fuel Specifications 519
 Fuel Properties 521
 Liquid Fuels 521
 Liquid Fuel Handling and Treatment 523
 Heavy Fuels 531
 Fuel Gas Handling and Treatment 535
 Equipment for Removal of Particulates and Liquids from Fuel Gas Systems 540
 Fuel Heating 542
 Cleaning of Turbine Components 543
 Hot Section Wash 544
 Compressor Washing 545
 Fuel Economics 546
 Operating Experience 548
 Heat Tracing of Piping Systems 549
 Types of Heat-Tracing Systems 550
 Stream Tracing Systems 550
 Electric Tracing 551
 Storage of Liquids 552
 Atmospheric Tanks 552
 Elevated Tanks 552
 Open Tanks 552
 Fixed Roof Tanks 552
 Floating Roof Tanks 552
 Pressure Tanks 553
 Bibliography 553
Part IV Auxiliary Components and Accessories

13 Bearings and Seals

Bearings

Rolling Bearings

Journal Bearings

Bearing Design Principles

Tilting-Pad Journal Bearings

Bearing Materials

Bearing and Shaft Instabilities

Thrust Bearings

Factors Affecting Thrust-Bearing Design

Thrust-Bearing Power Loss

Seals

Non-contacting Seals

Labyrinth Seals

Ring (Bushing) Seals

Mechanical (Face) Seals

Mechanical Seal Selection and Application

Product

Additional Product Considerations

Seal Environment

Seal Arrangement Considerations

Equipment

Secondary Packing

Seal-Face Combinations

Seal Gland Plate

Main Seal Body

Seal Systems

Associated Oil System

Dry Gas Seals

Tandem Dry Gas Seals

Tandem Dry Gas Seal with Labyrinth

Double Gas Seals

Operating Range of Dry Gas Seals

Dry Gas Seal Materials

Dry Gas Seal Systems

Dry Gas Seal Degradation

Bibliography

14 Gears

Gear Types

Factors Affecting Gear Design

Pressure Angle

Helix Angle
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooth Hardness</td>
</tr>
<tr>
<td>Scuffing</td>
</tr>
<tr>
<td>Gear Accuracy</td>
</tr>
<tr>
<td>Types of Bearings</td>
</tr>
<tr>
<td>Service Factor</td>
</tr>
<tr>
<td>Gear Housings</td>
</tr>
<tr>
<td>Lubrication</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
</tr>
<tr>
<td>Hobbing</td>
</tr>
<tr>
<td>Hobbing and Shaving</td>
</tr>
<tr>
<td>Hobbing and Lapping</td>
</tr>
<tr>
<td>Grinding</td>
</tr>
<tr>
<td>Gear Rating</td>
</tr>
<tr>
<td>Gear Noise</td>
</tr>
<tr>
<td>Installation and Initial Operation</td>
</tr>
<tr>
<td>Gear Failures</td>
</tr>
<tr>
<td>Acknowledgement</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>

Part V Installation, Operation, and Maintenance 627

15 **Lubrication** 629

- Basic Oil System 629
 - Lubrication Oil System 629
 - Seal Oil System 634
- Lubrication Management Program 636
- Lubricant Selection 637
- Oil Contamination 637
- Filter Selection 638
- Cleaning and Flushing 640
- Oil Sampling and Testing 641
 - Oil Analysis Tests 641
- Test Profiles 646
- Gearboxes 646
- Clean Oil Systems 647
- Coupling Lubrication 648
- Bibliography 649

16 **Spectrum Analysis** 651

- Vibration Measurement 656
 - Displacement Transducers 657
 - Velocity Transducers 657
 - Acceleration Transducers 658
 - Dynamic Pressure Transducers 658
Contents

Taping Data 659
Interpretation of Vibration Spectra 660
Subsynchronous Vibration Analysis Using RTA 664
Synchronous and Harmonic Spectra 668
Bibliography 672

17 Balancing 675
Rotor Imbalance 675
Balancing Procedures 680
 Orbital Balancing 681
 Modal Balancing 682
 Multiplane Balancing (Influence Coefficient Method) 683
Application of Balancing Techniques 686
User’s Guide for Multiplane Balancing 688
Bibliography 690

18 Couplings and Alignment 693
Gear Couplings 695
 Oil-Filled Couplings 698
 Grease-Packed Couplings 699
 Continuously Lubricated Couplings 699
 Gear Coupling Failure Modes 700
Metal Diaphragm Couplings 701
Metal Disc Couplings 704
Turbomachinery Uprates 705
Curvic Couplings 709
Shaft Alignment 710
 The Shaft Alignment Procedure 711
Bibliography 718

19 Control Systems and Instrumentation 721
Control Systems 721
 Start-up Sequence 728
Condition Monitoring Systems 730
 Requirements for an Effective Diagnostic System 732
Monitoring Software 733
Implementation of a Condition Monitoring System 735
 Plant Power Optimization 736
 Online Optimization Process 737
Life Cycle Costs 739
 Diagnostic System Components and Functions 741
 Data Inputs 741
 Instrumentation Requirements 741
 Typical Instrumentation (Minimum Requirements for Each Machine) 742
 Desirable Instrumentation (Optional) 742
Contents

Criteria for the Collection of Aerothermal Data 742
Pressure Drop in Filter System 745
Temperature and Pressure Measurement for Compressors
and Turbines 745
Temperature Measurement 746
Thermocouples 746
Resistive Thermal Detectors 747
Pyrometers 747
Pressure Measurement 748
Vibration Measurement 748
Vibration Instrumentation Selection 750
Selection of Systems for Analyses of Vibration Data 750
Auxiliary System Monitoring 751
Fuel System 751
Torque Measurement 752
Baseline for Machinery 752
Data Trending 754
The Gas Turbine 756
Identification of Losses 759
Compressor Aerothermal Characteristics and Compressor Surge 759
Failure Diagnostics 760
Compressor Analysis 760
Combustor Analysis 761
Turbine Analysis 762
Turbine Efficiency 764
Mechanical Problem Diagnostics 765
Data Retrieval 767
Summary 767
Bibliography 768

20 Gas Turbine Performance Test 769
Introduction 769
Performance Codes 770
Flow Straighteners 771
Pressure Measurement 771
Temperature Measurement 774
Flow Measurement 775
Gas Turbine Test 777
Gas Turbine 778
Air Inlet Filter Module 779
Compressor Module 779
Combustor Module 780
Expander Module 781
Life Cycle Consideration of Various Critical Hot Section Components 782
Performance Curves 782
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Computations</td>
<td>782</td>
</tr>
<tr>
<td>General Governing Equations</td>
<td>783</td>
</tr>
<tr>
<td>Gas Turbine Performance Calculation</td>
<td>786</td>
</tr>
<tr>
<td>Gas Turbine Performance Calculations</td>
<td>792</td>
</tr>
<tr>
<td>Correction Factors for Gas Turbines</td>
<td>793</td>
</tr>
<tr>
<td>Vibration Measurement</td>
<td>796</td>
</tr>
<tr>
<td>Rotor Dynamics</td>
<td>796</td>
</tr>
<tr>
<td>Vibration Measurements</td>
<td>796</td>
</tr>
<tr>
<td>Emission Measurements</td>
<td>797</td>
</tr>
<tr>
<td>Emissions</td>
<td>797</td>
</tr>
<tr>
<td>Plant Losses</td>
<td>800</td>
</tr>
<tr>
<td>Bibliography</td>
<td>802</td>
</tr>
<tr>
<td>21 Maintenance Techniques</td>
<td>803</td>
</tr>
<tr>
<td>Philosophy of Maintenance</td>
<td>803</td>
</tr>
<tr>
<td>Maximization of Equipment Efficiency and Effectiveness</td>
<td>805</td>
</tr>
<tr>
<td>Organization Structures for a Performance-Based Total Productive Maintenance Program</td>
<td>807</td>
</tr>
<tr>
<td>Implementation of a Performance-Based Total Productive Maintenance</td>
<td>808</td>
</tr>
<tr>
<td>Maintenance Department Requirements</td>
<td>810</td>
</tr>
<tr>
<td>Training of Personnel</td>
<td>810</td>
</tr>
<tr>
<td>I. Type of Personnel</td>
<td>810</td>
</tr>
<tr>
<td>II. Types of Training</td>
<td>811</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>814</td>
</tr>
<tr>
<td>Spare Parts Inventory</td>
<td>814</td>
</tr>
<tr>
<td>Condition and Life Assessment</td>
<td>815</td>
</tr>
<tr>
<td>Availability and Reliability</td>
<td>815</td>
</tr>
<tr>
<td>Redesign for Higher Machinery Reliability</td>
<td>817</td>
</tr>
<tr>
<td>Gas Turbine Start-up</td>
<td>819</td>
</tr>
<tr>
<td>Redesign for Higher Machinery Reliability</td>
<td>821</td>
</tr>
<tr>
<td>Advanced Gas Turbines</td>
<td>821</td>
</tr>
<tr>
<td>Axial-Flow Compressor</td>
<td>822</td>
</tr>
<tr>
<td>Dry Low NOx Combustors</td>
<td>823</td>
</tr>
<tr>
<td>Axial-Flow Turbine</td>
<td>826</td>
</tr>
<tr>
<td>Maintenance Scheduling</td>
<td>827</td>
</tr>
<tr>
<td>Maintenance Communications</td>
<td>829</td>
</tr>
<tr>
<td>Inspection</td>
<td>831</td>
</tr>
<tr>
<td>Long-Term Service Agreements</td>
<td>833</td>
</tr>
<tr>
<td>Borescope Inspection</td>
<td>835</td>
</tr>
<tr>
<td>Maintenance of Gas Turbine Components</td>
<td>841</td>
</tr>
<tr>
<td>Compressors</td>
<td>843</td>
</tr>
<tr>
<td>Compressor Cleaning</td>
<td>850</td>
</tr>
<tr>
<td>Compressor Water Wash</td>
<td>851</td>
</tr>
<tr>
<td>Different Wash Systems</td>
<td>853</td>
</tr>
</tbody>
</table>
On-Line Wash Cleaning System 853
Off-Line Crank Wash Cleaning System 853
On-Line and Off-Line Water Wash Fluids 856
Off-Line Crank Wash Procedure 857
Combustors 858
Turbines 861
Rejuvenation of Used Turbine Blades 866
Rotor Dynamic System Characteristics 869
Bearing Maintenance 870
 Clearance Checks 877
 Thrust-Bearing Failure 877
Coupling Maintenance 880
Repair and Rehabilitation of Turbomachinery Foundations 880
 Installation Defects 881
 Increasing Mass and Rigidity 882
Bibliography 883

22 Case Histories 885
 Axial-Flow Compressors 886
 Combustion Systems 897
 Transition Piece 902
 Axial-Flow Turbines 902

Appendix: Equivalent Units 923
Index 929