Contents

Preface ix

I FOUNDATIONS OF AIR POLLUTION

1. The State of the Atmosphere 3
 1.1 Introduction 3
 1.2 Physical and Chemical Properties of the Atmosphere 3
 1.3 Atmospheric Chemical Concentrations 6
 1.4 Fluid Properties and Dynamics 17
 Questions 20
 References 21

2. The Physics of the Atmosphere 23
 2.1 Energy 23
 2.2 Motion 28
 2.3 Energy–Motion Relationships 32
 2.4 Local Wind Systems 35
 2.5 General Circulation 38
 Questions 41
 References 41
 Suggested Reading 42

3. The Science of Air Pollution 43
 3.1 Air Pollution in Perspective 43
 3.2 Emergence of Air Pollution Science, Engineering, and Technology 46
 3.3 What is Air Pollution? 46
 3.4 Atmospheric Transport and Fate 52
 3.5 Air Pollution Engineering 57
 3.6 Social Aspects of Air Pollution 58
 3.7 Air Pollution Laws 58
 3.8 Air Pollution before the Industrial Revolution 74
 3.9 Air Pollution and the Industrial Revolution 75
 3.10 Air Pollution Events in the Twentieth and Twenty-First Centuries 77
 3.11 The Future 80
 Questions 80
 References 81

4. Air Pollution Decision Tools 83
 4.1 Introduction 83
 4.2 Interpreting Data 85
 4.3 Rare Events: Perfect Storms and Black Swans 95
 Questions 108
 References 109

5. Life Cycle Assessment of Air Pollutants 111
 5.1 Systems Context for Air Pollution 111
 5.2 Energy 111
 5.3 Energy Life Cycles 112
 5.4 Environmental Justice during Extraction 122
 5.5 Fuel Cycle Impacts 123
 5.6 Refining Stressors 125
 5.7 Operation Stage 127
 5.8 Downstream Impacts 131
 Questions 132
 References 132

II THE RISKS OF AIR POLLUTION

6. Inherent Properties of Air Pollutants 139
 6.1 Inherency 139
 6.2 Vapor Pressure 175
 6.3 Solubility 178
 6.4 Persistence 179
 6.5 Physical Phase 184
 Questions 194
 References 194

7. Air Pollutant Hazards 197
 7.1 Hazards 197
 7.2 Dose Response 201
 7.3 Air Pollution Hazards 204
 7.4 Air Toxics 204
 7.5 Criteria Pollutants 209
 Questions 213
 References 213

8. Air Pollutant Exposures 215
 8.1 Exposure 215
 8.2 Exposure Calculations 221
 8.3 Chemical Intake and Exposure 224
 8.4 Exposure Data 231
 Questions 245
 References 245

9. Respiratory Effects of Air Pollutants 247
 9.1 Respiration in Humans 247
 9.2 Lung Kinetics 249
 9.3 Air Pollutant Properties Important to Respiration 251
CONTENTS

9.4 Respiratory System Transport and Fluid Dynamics 252
9.5 Respiratory Health Effects 255
Questions 255
References 256

10. Cardiovascular Effects of Air Pollutants 257
10.1 Human Cardiovascular System 257
10.2 Cardiovascular Disease and Air Pollution Associations 257
10.3 Cardiovascular Effects 264
Questions 268
References 268

11. Cancer and Air Pollutants 271
11.1 Linking Air Pollution to Cancer 271
11.2 Estimating Risk from Airborne Carcinogens 276
11.3 National Air Toxics Assessment 288
11.4 Cancer Dose—Response 288
11.5 Airborne Carcinogens 291
11.6 Indirect Relationships 306
Questions 310
References 310

12. Reproductive and Hormonal Effects of Air Pollutants 313
12.1 Reproductive and Developmental Effects 313
12.2 Endocrine Disruption 313
Questions 324
References 324

13. Neurological Effects of Air Pollutants 327
13.1 Neurotoxicity 327
13.2 Neurotoxic Metals 330
13.3 Neurotoxic Organic Compounds 338
13.4 Neurotoxic Particulates 338
13.5 Relationship to Other Effects 338
Questions 339
References 339

14. Air Pollution’s Impact on Ecosystems 341
14.1 Ecosystem Risk 341
14.2 Ecosystem Susceptibility to Air Pollution 341
14.3 Air Pollution Impacts on Aquatic Ecosystems 343
14.4 Air Pollution Impacts on Terrestrial Ecosystems 346
Questions 366
References 367
Suggested Reading 368

15. Air Pollution’s Impact on Materials and Structures 369
15.1 Abiotic Receptors 369
15.2 Effects on Metals 370

15.3 Effects on Stone 372
15.4 Effects on Fabrics and Dyes 373
15.5 Effects on Leather, Paper, Paint, and Glass 374
15.6 Effects on Rubber 375
15.7 Material Value 376
Questions 377
References 377
Suggested Reading 378

III

TROPOSPHERIC POLLUTION

16. Scale and Complexity of Air Pollution 381
16.1 Mechanical Scale and Complexity 381
16.2 Air Pollution Variability and Uncertainty 398
16.3 Air Pollution Scales 398
Questions 411
References 412

17. Air Pollutant Kinetics and Transformation 413
17.1 Chemical Transformation 413
17.2 Kinetics 416
17.3 Rate Laws and Air Pollution Thermodynamics 421
17.4 Atmospheric Transformation 427
Questions 434
References 435

18. Air Pollutant Kinetics and Equilibrium 437
18.1 Kinetics vs Equilibrium 437
18.2 Air Pollution Chemodynamics 438
18.3 Fugacity 454
18.4 Integrating Inherent Properties and Substrate Characteristics 456
18.5 Movement into the Atmosphere 460
18.6 Application of the Octanol—Water Coefficient 463
18.7 Partitioning between Air and Tissue 465
18.8 Dynamics within an Organism 466
Questions 472
References 473

19. Temporal Aspects of Air Pollution 475
19.1 Time and Air Pollution 475
19.2 Persistence 476
19.3 Temporal Aspects of Transformation 481
19.4 Bioaccumulation 482
19.5 Temporal Aspects of Toxicokinetics 484
19.6 Temporal Aspects of Air Quality Models 487
Questions 487
References 488
IV

BIOGEOCHEMISTRY OF AIR POLLUTANTS

20. The Hydrologic Cycle 491
 20.1 The Water Planet 491
 20.2 The Water Molecule 491
 20.3 The Hydrosphere 492
 20.4 Scale and Complexity of Water Cycles 495
Questions 501
References 501

21. The Carbon Cycle 503
 21.1 Carbon Chemistry 503
 21.2 Carbon Sinks and Sources 506
 21.3 Carbon Equilibrium and Cycling 507
 21.4 Carbon Cycling and Climate 509
 21.5 Carbon Geoengineering 512
Questions 518
References 518

22. The Nitrogen and Sulfur Cycles 519
 22.1 The Nitrogen Cycle 519
 22.2 Interactions between Sulfur and Nitrogen 524
 22.3 The Sulfur Cycle 526
 22.4 Other Nutrient Cycles 527
Questions 528
References 529

23. Metal and Metalloid Cycles 531
 23.1 Heavy Metal Cycling 535
 23.2 Metalloid Cycling 540
Questions 542
References 544

V

ADDRESSING AIR POLLUTION

24. Source Sampling and Emission Measurement 559
 24.1 Sources of Pollution 559
 24.2 Anthropogenic Sources 563
Questions 575
References 576
Suggested Reading 577

25. Methods for Measuring Air Pollutants 579
 25.1 Introduction 579
 25.2 Gases and Vapors 586
 25.3 Particulate Matter 607

25.4 Measuring Gas and Particulate Phases Together 612
25.5 Analysis and Measurement of Odors 612
25.6 Analysis and Measurement of Visibility 614
25.7 Analysis and Measurement of Acidic Deposition 619
25.8 Measuring Air Toxics 622
Questions 623
References 624
Suggested Readings in Addition to the References 626

26. Applying and Interpreting Air Quality Monitoring Data 627
 26.1 Introduction 627
 26.2 Stationary Monitoring Networks 627
 26.3 Air Pollutant Phases 630
 26.4 Air Pollution from Hazardous Wastes Sites 634
 26.5 Quality Assurance 644
 26.6 Monitoring Plan Example 648
 26.7 Laboratory Analysis 650
 26.8 Statistical Analysis and Display 655
 26.9 Criteria and Standards 656
 26.10 Indoor Air 670
 26.11 Personal Monitoring 678
Questions 678
References 680
Suggested Readings in Addition to the References 682

27. Modeling Applications 683
 27.1 Value of Models 683
 27.2 Meteorological Bases of Atmospheric Pollution 684
 27.3 Transport and Dispersion of Air Pollutants 690
 27.4 Air Pollution Modeling and Prediction 704
 27.5 Modeling Air Pollution Partitioning 735
 27.6 Exposure and Dose Models 746
Questions 748
References 751
Suggested Reading 753

28. Air Quality Status and Trends 755
 28.1 Introduction 755
 28.2 Tropospheric Ozone and Smog 761
 28.3 Carbon Monoxide 764
 28.4 Nitrogen Dioxide 764
 28.5 Sulfur Dioxide 766
 28.6 Particulate Matter 768
 28.7 Airborne Lead 769
 28.8 Air Toxics 769
 28.9 Acid Deposition 770
 28.10 Stratospheric Ozone 771
 28.11 Global GHGs 771
 28.12 Indoor Air Quality 773
 28.13 Air Quality Indices 777
Questions 783
References 784