Contents

List of contributors xv
Woodhead Publishing Series in Composites Science and Engineering xix
Editors’ Foreword xxv
Foreword by Tony Kelly xxvii
Preface xxix

Part One Multi-scale mechanics, physical modelling and damage analysis 1

1 Composite micromechanics: from carbon fibres to graphene 3
 R.J. Young
 1.1 Introduction 3
 1.2 Fibre reinforcement – theory 3
 1.3 Fibre reinforcement – experiment 8
 1.4 Nanoplatelet reinforcement – theory 13
 1.5 Nanoplatelet reinforcement – experiment 17
 1.6 Future trends and challenges 19
 1.7 Sources of further information 22
 References 23

2 A mechanisms-based framework for describing failure in composite materials 25
 R. Talreja
 2.1 Introduction 25
 2.2 Phenomenological failure theories 26
 2.3 Mechanisms-based failure analysis 33
 2.4 A comprehensive failure analysis strategy 39
 2.5 Conclusions 40
 References 41

3 The origins of residual stress and its evaluation in composite materials 43
 N. Zobeiry, A. Poursartip
 3.1 Introduction 43
 3.2 Origins of residual stress 44
3.3 Measurements and predictions 52
3.4 Effects and mitigations 58
3.5 Residual stresses in carbon-epoxy composites and typical material properties 62
3.6 Discussion 66
References 68

4 A multiscale synergistic damage mechanics approach for modeling progressive failure in composite laminates 73
C.V. Singh
4.1 Introduction 73
4.2 Continuum damage mechanics 74
4.3 Synergistic damage mechanics 80
4.4 Finite element (FE) implementation of synergistic damage mechanics (SDM) approach for structural analysis 95
4.5 Current issues and future trends 99
4.6 Sources of further information and advice 100
Acknowledgments 101
References 101

5 From micro to macro: simulating crack propagation in carbon fibre composites 105
R.M. Sencu, Z.J. Yang, Y.C. Wang
5.1 Introduction 105
5.2 Overview of existing multi-scale modelling methods 106
5.3 Numerical crack models 113
5.4 Modelling of transverse crack growth in a carbon fibre-reinforced polymer ply 114
5.5 Conclusions and final remarks 119
Acknowledgements 120
References 120

6 Multi-scale modeling of high-temperature polymer matrix composites for aerospace applications 125
S. Roy
6.1 Introduction 125
6.2 DCB experiment 127
6.3 Viscoelastic cohesive layer model 128
6.4 Extraction of cohesive law from experimental data through J-integral 130
6.5 Evaluation of damage evolution law 131
6.6 Numerical results and discussion 136
6.7 Conclusions 140
References 141
7 Modeling of damage evaluation and failure of laminated composite materials across length scales 143
 S. Lurie, M. Minhat
7.1 Introduction 143
7.2 Microdamage mechanisms in fiber-reinforced composites 144
7.3 Modeling microdefect evolution in a lamina and stiffness degradation of unidirectional composites 148
7.4 Modeling of stiffness degradation of laminated composite materials across length scales 168
7.5 Conclusions
 Acknowledgment 193
 References 194

Part Two Computational modelling, damage simulation and fatigue analysis 197

8 Computational techniques for simulation of damage and failure in composite materials 199
 J.L. Curiel-Sosa, R. Brighenti, M.C. Serna Moreno, E. Barbieri
8.1 Introduction 199
8.2 Semi-numerical techniques 201
8.3 Meshless methods 205
8.4 Partition of unity methods 207
8.5 Multiscale and homogenisation
 References 214
 Appendix: nomenclature 218

9 Damage evolution modelling in laminates 221
 J. Varna
9.1 Introduction 221
9.2 Damage initiation and growth 226
9.3 Energy release rate-based analysis of intralaminar crack propagation 234
9.4 Summary
 References 241
 Appendix: expressions for crack force opening displacements (COD) and crack sliding displacements (CSD) 243

10 Virtual testing of impact in fiber reinforced laminates 247
 S. Sádaba, F. Martínez-Hergueta, C.S. Lopes, C. Gonzalez, J. LLorca
10.1 Introduction 247
10.2 Mesomechanical modelling strategy of composite laminates 248
10.3 Use case 1: low-velocity impact due to drop weight 257
10.4 Use case 2: high-velocity impact 263
10.5 Conclusions and future trends 267
11 Mixed-mode fatigue of bonded joints in composites: experiments and modelling

M. Quaresimin, P.A. Carraro, G. Meneghetti, M. Ricotta

11.1 Introduction

11.2 Materials and test equipment

11.3 Calculation of the strain energy release rate

11.4 Static test results

11.5 Damage evolution under cyclic loading

11.6 Analysis of damage mechanisms

11.7 A new criterion for crack propagation in bonded joints

11.8 Reanalysis of fatigue test results

11.9 Conclusions

References

12 A general and rigorous accelerated testing methodology for long-term life prediction of polymeric materials

M. Nakada, Y. Miyano

12.1 Introduction

12.2 Time–temperature superposition principle

12.3 Advanced accelerated testing methodology

12.4 Experiments

12.5 Conclusions

Acknowledgments

References

13 Effects of environment on creep behavior of three oxide–oxide ceramic matrix composites at 1200 °C

M.B. Ruggles-Wrenn

13.1 Introduction

13.2 Experimental arrangements

13.3 Mechanical behavior – effects of environment

13.4 Composite microstructure

13.5 Concluding remarks

References

14 Anisotropic three-dimensional arrays of fibres

K.H.G. Ashbee

14.1 Introduction

14.2 Fibre reinforcements designed to resist shear of all orientations

Acknowledgements

References
Part Three Structural integrity

15 Structural integrity and the implementation of engineering composite materials

P.W.R. Beaumont

15.1 Introduction 353
15.2 Taking the long view 354
15.3 Fitness considerations for long-life implementation 358
15.4 The traditional approach to design 359
15.5 Evolution of mechanical design 362
15.6 Structural integrity and length scale 363
15.7 Structural integrity and multiscale modelling 365
15.8 At the heart of structural integrity 367
15.9 A guide to thinking and planning a physical model 370
15.10 Modelling structure that evolves with time 371
15.11 Designing against stress corrosion cracking 376
15.12 Multiscale modelling and computer simulation 378
15.13 Can non-destructive evaluation (NDE) detect defects in laminated structures and bonded structures? 388
15.14 The future looks bright 390
15.15 Final remarks 393
Acknowledgements 395
References 395
Further reading 397

16 The control of the residual lifetimes of carbon fibre-reinforced composite pressure vessels

A.R. Bunsell, A. Thionnet

16.1 Introduction 399
16.2 Delayed fibre failures in carbon fibre composites 402
16.3 Development of models of damage accumulation in advanced composites 403
16.4 Comparison of results of modelling and observations using high-resolution tomography: validation of the model 412
16.5 Consequences of the model 412
16.6 Intrinsic limits based on component behaviour 417
16.7 Long-term failure probability 418
16.8 Conclusions 419
References 420

17 An extension of the point-stress criterion based on a coupled stress and energy fulfilment: application to the prediction of the open-hole tensile strength of a composite plate

E. Martin, D. Leguillon, N. Carrère

17.1 Introduction 425
17.2 The coupled criterion 427
17.3 Isotropic plate 430
17.4 Orthotropic plate 436
17.5 Comparison with experimental data 438
17.6 Conclusions 441
References 442

18 Compressive fracture of layered composites caused by internal
instability 445
I.A. Guz, M. Menshykova, C. Soutis
18.1 Introduction 445
18.2 A unified computational approach to instability of periodic
laminated materials 447
18.3 Application to the case of a stiffened panel with an open hole 458
18.4 Concluding remarks 474
Acknowledgements 475
References 475

19 Analysis of delamination in laminates with angle-ply matrix cracks:
onset of damage and residual stiffness properties 479
M. Kashtalyan, C. Soutis
19.1 Introduction 479
19.2 Residual stiffness of composite laminate with
crack-induced delaminations 480
19.3 Delamination onset and growth prediction 495
19.4 Conclusions 505
Acknowledgements 506
References 506
Appendix A: out-of-plane shear stresses 509
Appendix B: shear lag parameters 510
Appendix C: material constants A_j, B_j and C_j 512

20 Blast resistance of polymeric composite sandwich
structures 513
M. Kelly, H. Arora, J.P. Dear
20.1 Introduction 513
20.2 Literature review 513
20.3 Materials 516
20.4 Experimental 518
20.5 Instrumentation 520
20.6 Results 520
20.7 Discussion 532
20.8 Conclusion 534
Acknowledgements 536
References 536
21 Maintenance and monitoring of composite helicopter structures and materials 539
M. Martinez, M. Yanishevsky, B. Rocha, R.M. Groves, N. Bellinger
21.1 Introduction 539
21.2 Explanation of damage degradation modes 545
21.3 Maintenance of materials 550
21.4 SHM and NDI techniques 558
21.5 Future trends 569
21.6 Conclusions 570
Acknowledgements 571
References 571

Part Four Structural integrity of bonded and bolted joints 579

22 Dynamic fractures of adhesively bonded carbon fibre-reinforced polymeric joints 581
J.P. Casas-Rodriguez, I.A. Ashcroft, V.V. Silberschmidt
22.1 Introduction 581
22.2 Fatigue in adhesively bonded joints 582
22.3 Impact and impact fatigue 595
22.4 Fatigue crack growth in lap strap joint specimens 608
22.5 Modelling fatigue crack growth in bonded carbon fibre-reinforced polymeric lap strap joints 619
22.6 Conclusions 632
22.7 Future trends 632
References 633

23 Damage tolerance and survivability of composite aircraft structures 641
B. Rasuo
23.1 Introduction 641
23.2 Experimental methodology for evaluation of damage tolerance and survivability 644
23.3 Results: a case study 651
23.4 Result analysis and discussion 653
23.5 Conclusions 654
23.6 Sources of further information and advice 654
Acknowledgements 655
References 655

24 Computational and experimental study of composite scarf bonded joints 659
Y.W. Kwon
24.1 Introduction 659
24.2 Computational modeling of joint interface 661
24.3 Experimental study of joint interface 671
24.4 Improvement of interface strength 678
24.5 Conclusion Reference 692

25 Composite bond inspection 695
R.G. Dillingham
25.1 What are the drivers for creating adhesively bonded aircraft structures? 695
25.2 Brief description of an adhesive bond and how it works: bulk properties, interphases, and interfaces 696
25.3 History of bonded aircraft construction 697
25.4 Composite versus metallic bonded structures 697
25.5 Composite bonding processes in aircraft manufacture 698
25.6 Bonding processes in composite aircraft repair 698
25.7 Control of bond quality 699
25.8 Defects in adhesive joints 701
25.9 Bond inspection tools 701
25.10 Proof testing 704
25.11 Conclusions Reference 704

26 Tensile failure of composite scarf repair 707
E.V. Iarve, T. Breitzman, E.R. Ripberger
26.1 Introduction 707
26.2 Experimentation 710
26.3 Modeling methodology 717
26.4 Results and discussion 720
26.5 Conclusions 729
26.6 Future trends and recommendations 729
Acknowledgments 730
References 730

Part Five Innovative manufacturing and materials for increased performance 733

27 Carbon and titanium dioxide nanotube polymer composite manufacturing – characterization and interphase modeling 735
G.C. Papanicolaou, D.V. Portan
27.1 Introduction 735
27.2 Carbon nanotubes 737
27.3 Manufacturing and characterization of epoxy resin/carbon nanotube composites 741
27.4 Titanium dioxide nanotubes 743
27 Experimental investigation of titania nanotubes (TNTs)
Dedicated to Tony Kelly
References

27.5 Experimental investigation of titania nanotubes (TNTs)

27.6 Interphase modeling

27.7 Conclusions

Dedicated to Tony Kelly
References

28 Recycling of reinforced plastics

28.1 Introduction

28.2 Objective

28.3 Materials and components used

28.4 Preparation of composite for remanufacturing

28.5 Manufacture of virgin specimens

28.6 Mechanical testing

28.7 Effect on mechanical properties of recycling of virgin material and GRP boat specimens

28.8 Remanufacturing

28.9 Hot forming (F + H)

28.10 Conclusions

References

29 Design and performance of novel aircraft structures with folded composite cores
A. Johnson, S. Kilchert, S. Fischer, N. Toson-Pentecôte

29.1 Introduction

29.2 Folded core materials, cell geometry and manufacture

29.3 Folded core properties and design

29.4 Impact performance of foldcore composite sandwich panels

29.5 Conclusions and outlook

29.6 Further reading

Acknowledgements
References

Index

Contents

27.5 Experimental investigation of titania nanotubes (TNTs)

27.6 Interphase modeling

27.7 Conclusions

Dedicated to Tony Kelly
References

28 Recycling of reinforced plastics

28.1 Introduction

28.2 Objective

28.3 Materials and components used

28.4 Preparation of composite for remanufacturing

28.5 Manufacture of virgin specimens

28.6 Mechanical testing

28.7 Effect on mechanical properties of recycling of virgin material and GRP boat specimens

28.8 Remanufacturing

28.9 Hot forming (F + H)

28.10 Conclusions

References

29 Design and performance of novel aircraft structures with folded composite cores
A. Johnson, S. Kilchert, S. Fischer, N. Toson-Pentecôte

29.1 Introduction

29.2 Folded core materials, cell geometry and manufacture

29.3 Folded core properties and design

29.4 Impact performance of foldcore composite sandwich panels

29.5 Conclusions and outlook

29.6 Further reading

Acknowledgements
References

Index