Contents

Preface xi

1. Introduction 1
 1.1 The Concept of IoT 1
 1.2 Existing Manufacturing Paradigms and Their Limitations 2
 1.2.1 Agile Manufacturing 2
 1.2.2 Networked Manufacturing 4
 1.2.3 Reconfigurable Manufacturing Systems 6
 1.2.4 Product-Service System/Industrial Product-Service Systems 8
 1.2.5 Manufacturing Grid 9
 1.2.6 Cloud Manufacturing 10
 1.2.7 Limitations 12
 1.3 Applications of IoT in Manufacturing System 13
 1.4 The Conception of IoT-MS 17
 1.5 Key Features and Limitations of IoT-MS 17
 1.6 Organization of the Book 18
 References 18

2. Overview of IoT-Enabled Manufacturing System 21
 2.1 Introduction 21
 2.2 Related Work 23
 2.2.1 Advanced Manufacturing Paradigms and Technologies 23
 2.2.2 Manufacturing Information Standard and Share and Integration Method 27
 2.3 Overall Architecture of IoT-MS 28
 2.4 Integration Framework of Real-Time Manufacturing Information 30
 2.4.1 Framework of Real-Time Manufacturing Information Sharing and Integration 30
 2.4.2 Real-Time Manufacturing Data Processing, Sharing, and Exchanging Service 31
 2.5 The Worklogic of IoT-MS 34
 2.6 Description of the Core Technologies of IoT-MS 35
 References 38
3. **Real-Time and Multisource Manufacturing Information Sensing System**

3.1 Introduction

3.2 Related Works

3.2.1 Real-Time Manufacturing Data Capturing

3.2.2 Sensor Management

3.2.3 Manufacturing Information Processing and Sharing

3.3 Overall Architecture of Real-Time and Multisource RMMISS

3.3.1 Deployment of Multiple Sensors

3.3.2 Multiple Sensors Manager

3.3.3 Multisource Manufacturing Information Processing and Sharing

3.4 Deployment of Multisensors

3.4.1 Description of Multisource Manufacturing Information

3.4.2 Multiple Sensors Selection

3.5 Multiple Sensors Manager

3.6 Multisource Manufacturing Information Capturing and Sharing

3.6.1 Data Preprocessing

3.6.2 Information Encapsulation

3.6.3 Manufacturing Information Sharing

3.7 Case Study

3.7.1 Hardware Device

3.7.2 Software System

References

4. **IoT-Enabled Smart Assembly Station**

4.1 Introduction

4.2 Related Works

4.2.1 RFID-Based Applications in Assembly Line

4.2.2 Assistant Services for Assembly Line

4.3 Overall Architecture of IoT-Enabled Smart Assembly Station

4.4 Real-Time Status Monitoring

4.5 Real-Time Production Guiding

4.6 Real-Time Production Data Sharing

4.7 Real-Time Production Requeuing

References

5. **Cloud Computing-Based Manufacturing Resources Configuration Method**

5.1 Introduction

5.2 Related Works

5.2.1 Cloud Manufacturing

5.2.2 Real-Time Production Information Perception and Capturing

5.2.3 Cloud Service Selection and Composition
5.3 Overall Architecture of Manufacturing Resources Configuration Method 90

5.4 Cloud Machine Model 90
5.4.1 The Information Model of Manufacturing Service 92
5.4.2 The Ontology Model of Manufacturing Service 93

5.5 MS-UDDI 96
5.5.1 UDDI 96
5.5.2 The Framework of MS-UDDI 96

5.6 Manufacturing Service Registration and Publication 97

5.7 Task-Driven Manufacturing Service Configuration Model 99
5.7.1 Task-Driven Service Proactive Discovery 99
5.7.2 Service Optimal Configuration Method 100

References 104

6. IoT-Enabled Smart Trolley

6.1 Introduction 109
6.2 Related Works 110
6.2.1 Material Handling 110
6.2.2 Real-Time Data Capturing in Manufacturing Field 111

6.3 Real-Time Information Enabled Material Handling Strategy 113

6.4 Overall Architecture of Optimization Model for SMH 115
6.5 IoT-Enabled Smart Trolley 116
6.5.1 Real-Time Information Capturing and Encapsulation 116
6.5.2 Real-Time Information Exchange 118
6.5.3 Workflow-Based Real-Time Guidance 118

6.6 Two-Stage Combination Optimization Method for Move Tasks 119
6.6.1 Real-Time Information Models of Move Tasks 119
6.6.2 Preoptimization for Candidate Tasks Set 121
6.6.3 AHP-Based Combination Optimization 121

References 124

7. Real-Time Key Production Performances Analysis Method

7.1 Introduction 129
7.2 Related Works 130
7.2.1 Real-Time Production Monitoring Technique 130
7.2.2 Real-Time Production KPIs Analysis 130
7.2.3 Real-Time Production Anomaly Analysis 132
7.2.4 Research Gap 133

7.3 Overall Architecture of Real-Time Production Performance Analysis Model 133
7.3.1 Configuration of Smart Sensors 133
7.3.2 Critical Event–Based Information Extracting Process 135
7.3.3 Real-Time Key Production Anomaly Analysis 135

7.4 The Event Hierarchy of Critical Event 135
7.5 HTCPN-Based Critical Event Analysis 136
7.5.1 Basic Concepts of HTCPN 136
7.5.2 HTCPN Model Construction 137
7.5.3 Connection Between HTCPN and Manufacturing Resources 138
7.5.4 Production Performance Extraction 139

7.6 Real-Time Production Anomaly Diagnosis 139

7.6.1 New Cases 140
7.6.2 Historical Cases 140
7.6.3 Decision Variables 140
7.6.4 Tree Builder 141
7.6.5 Anomaly Extraction and Causes Diagnosis 142

References 143

8. Real-Time Information-Driven Production Scheduling System 147

8.1 Introduction 147
8.2 Related Works 148
8.2.1 Agent Technology and Applications in Manufacturing Field 148
8.2.2 Real-Time Production Scheduling 149
8.2.3 Manufacturing Information Monitor Technology 151

8.3 Overall Architecture of Real-Time Information-Driven Production Scheduling System 151
8.4 Equipment Agent 153
8.5 Capability Evaluation Agent Model 154
8.6 Real-Time Scheduling Agent Model 155
8.7 Production Execution Monitor Agent Model 157
8.8 GA-Based Production Scheduling Algorithm 159

References 161

9. IoT-MS Prototype System 165

9.1 Configuration of a Smart Shop Floor 165
9.1.1 Formation of the Production Task 165
9.1.2 Layout of the Shop Floor 166
9.1.3 Deployment of Hardware Devices 166

9.2 The Framework of the Prototype System 170
9.2.1 System Architecture 170
9.2.2 Information Model 170

9.3 The Logical Flow of the Prototype System 173

9.4 Task Driven Manufacturing Resource Configuration Module 175
9.4.1 Phase 1: MC Optimal Configuration 175
9.4.2 Phase 2: CMS Optimal Configuration 176

9.5 Production Scheduling/Rescheduling Module 178
9.5.1 Quantifying the Tasks 178
9.5.2 The Scheduling and the Rescheduling Method 179

9.6 IoT-Enabled Smart Material Handling Module 181
9.6.1 Task Description 181
9.6.2 Calculations for the Moving Tasks 183
9.6.3 User Interfaces of the Prototype System 185

References 191
9.7 IoT-Enabled Smart Station 190
 9.7.1 The Case Scenario 190
 9.7.2 Operation Guidance From the System 190
 9.7.3 Real-Time Queuing Under Exceptions 190
9.8 Real-Time Manufacturing Information Track and Trace 194
9.9 Real-Time Key Production Performances Monitor Module 197
 9.9.1 Details of the Case 197
 9.9.2 The Hierarchy Timed Color Petri Net Model 197
References 200

10. Conclusions and Future Works 201
 10.1 Conclusions 201
 10.2 Future Works 203

Index 205