Introduction to Modern Navigation Systems

List of Chapters:

Preface
Introduction

1. Vectors and Matrices
 1.1 Introduction
 1.2 Vector Inner Product
 1.3 Vector Cross Products and Skew Symmetric Matrix Algebra

2. Coordinate Transformation between Orthonormal Frames
 2.1 Introduction
 2.2 Direction Cosine Matrices
 2.3 The Direction Cosine Matrix is a Unitary Matrix
 2.4 The Direction Cosine Matrix is a Transformation Matrix
 2.5 DCM Fixed Axis
 2.6 The Rotation Matrix
 2.7 Inner and Outer Transformation Matrices
 2.8 The Quaternion

3. Forms of the Transformation Matrix
 3.1 Introduction
 3.2 Simple Frame Rotations
 3.3 Euler Angles
 3.4 Rotation Vector
 3.5 Quaternion
 3.6 Simple Quaternions
 3. Conversion between Forms
 3.7.1 Conversion between DCM and Euler
 3.7.2 Conversion between DCM and Quaternion
 3.7.3 Conversion between Euler Angles and Quaternion
 3.8 Dynamics of the Transformation Matrix

3.8.1 DCM Differential Equation
3.8.2 Quaternion Differential Equation
3.8.3 Rotation Vector Differential Equation
3.8.4 Euler Angles Differential Equation

4. Earth and Navigation
 4.1 Introduction
 4.2 Earth, Geoid and Ellipsoid
 4.3 Radii of Curvature
 4.4 Earth, Inertial and Navigation Frames
 4.5 Earth Rate
 4.6 The Craft Rate ω_{en}^e
 4.7 Solution of the DCM C_0^e
 4.8 Gravitational and Gravity Fields

5. The Inertial Navigation System Equations
 5.1 Introduction
 5.2 Body Frame of Reference
 5.3 Inertial Sensors
 5.3.1 The Accelerometer
 5.3.2 The Rate Gyro
 5.4 The Attitude Equation
 5.5 The Navigation Equation
 5.6 Navigation Equations Computational Flow Diagram
 5.7 The Navigation Equation in Earth Frame

6. Implementation
 6.1 Introduction
 6.2 The Rotation Vector Differential Equation
 6.3 The Attitude Equation
 6.4 The Craft Velocity Equation
 6.5 The Craft Position Equation
 6.6 The Vertical Channel
7. Air Data Computer
 7.1 Introduction
 7.2 US Standard Atmosphere 1976
 7.3 Pressure Altitude
 7.4 Vertical Channel Parameter Estimation Using Inertial and Air Data
 7.5 Density Altitude
 7.6 Altitude (Descend /Climb) Rate
 7.7 Air Speed
 7.8 Indicated Air Speed (IAS)

8. Polar Navigation
 8.1 Introduction
 8.2 Wander Azimuth Navigation
 8.3 Prospective of the Wander Azimuth Approach
 8.4 Polar Circle Navigation Algorithm
 8.5 Alternative Polar Circle Navigation Frame

9. Alignment
 9.1 Introduction
 9.2 IMU Alignment
 9.3 Alternative Algorithm for C^b_n
 9.4 Estimation of the Accelerometer and Gyro Biases
 9.5 Effects of Biases on Estimate of C^b_n

10. Attitude and Heading Reference System
 10.1 Introduction
 10.2 Attitude Initialization
 10.3 Heading Initialization
 10.4 Gyro Drift Compensation
 10.5 G Slaving
 10.5.1 X-Gyro Bias
 10.5.2 Y-Gyro Bias
 10.5.3 Z-Gyro Bias
 10.6 Alternative Approach for Gyro Drift Compensation
 10.7 Maneuver Detector
 10.7.1 Rate Gyro Threshold

11. GPS Aided Inertial System
 11.1 Introduction
 11.2 Navigation Frame Error Equation
 11.2.1 Craft Rate Error $\delta \omega_{en}$
 11.2.2 Earth Rate Error $\delta \omega_{ie}$
 11.2.3 Position Errors
 11.2.4 Attitude Error
 11.2.5 Gravity Error
 11.2.6 Velocity Error
 11.2.7 Navigation Frame Error State Equation
 11.2.8 Error Block Diagram
 11.3 Earth Frame Error Equations
 11.3.1 Attitude Error
 11.3.2 Velocity Error
 11.3.3 Position Error
 11.3.4 Earth Frame Error State Equation
 11.4 Inertial Sensors Error Models
 11.5 The Global Positioning System
 11.6 Mechanization of the INS/GPS Equations

Appendix A. The Vector Dot and Cross Products
Appendix B. Introduction to Quaternion Algebra
Appendix C. Simulink® Models
Appendix D. Ellipse Geometry
Appendix E. Vector Dynamics
Appendix F. Derivation of Air Speed Equations
Appendix G. DCM Error Algebra
Appendix H. Kalman Filtering
Index