

Hybrid and Electric Buses and Taxis 2013-2023: Forecasts, Opportunities, Players

With suppliers, manufacturers and technology appraisal

By Dr Peter Harrop

	Contents	Page
1.	EXECUTIVE SUMMARY AND CONCLUSIONS	1
1.1.	Definitions	1
1.2.	Manufacturing buses and taxis	2
1.3.	Hybrids are key for now	2
1.4.	Advantages of electric buses	9
1.5.	Basis for forecasting global bus sales by region	15
1.6.	Demand and production in China	17
1.7.	Adoption of electric buses vs electric cars	18
1.8.	Taxis	25
1.9.	Electric bus design is ahead of cars	36
1.10.	Radically different bus powertrains	39
2.	INTRODUCTION	41
2.1.	Electric vehicles in general	41
2.2.	Advantages of electric buses	42
2.3.	Highlights 2011-2021	45
2.4.	Definitions and trends	45
2.5.	Modest success of electric microbuses	47
2.6.	Convergence of hybrid and pure electric buses.	55
2.7.	Convergence of trolley buses and free running electric buses	56
2.8.	CNG Preferred for Los Angeles Buses	64
3.	ELECTRIC BUS MANUFACTURERS AND TECHNOLOGIES	65
3.1.	History of electric buses	65
3.2.	Main components of hybrid bus power trains	85
3.3.	Superbus	96
3.4.	Fuel cells rescued by batteries	97
4.	PROFILES OF SOME INTERESTING SUPPLIERS	101
4.1.	Alexander Dennis UK	101
4.2.	Anhui Ankai Automobile Company China	102
4.3.	BYD China	104
4.4.	Daimler Germany	104
4.5.	Hino Motors and parent company, Toyota Japan	107
4.6.	IVECO Italy	108
4.7.	ISE Corp, USA	109
4.8.	MAN hybrid bus Germany: supercapacitor not battery	110
4.9.	Navistar USA	111

4.10.	New Flyer Industries Canada	112
4.11.	Nova Bus Canada	112
4.12.	Optare UK	113
4.13.	Proterra	114
4.14.	Ryobi Bus Japan	114
4.15.	TATA India	115
4.16.	Volvo Sweden	117
4.17.	Wrightbus UK	119
4.18.	Zhongtong Bus Holding Co., Ltd, China	119
5.	BUS DRIVE TRAINS	121
5.1.	Adura Systems USA	121
5.2.	Allison Transmission USA	122
5.3.	Azure Dynamics USA	125
5.4.	BAE Systems UK, USA	125
5.5.	BLK China	127
5.6.	Eaton USA	128
5.7.	ISE Corporation	128
5.8.	SIM Drive Corporation Japan	129
5.9.	SR Drives UK, Green Propulsion Belgium	130
5.10.	ThunderVolt USA	132
6.	ELECTRIC TAXI MANUFACTURERS AND TECHNOLOGIES	133
6.1.	Electric taxi projects in US, UK, Europe, China, Japan and Mexico	134
6.1.1.	China	134
6.1.2.	Mexico	137
6.2.	Mitsubishi taxi rollout in Japan	141
6.2.1.	Mitsubishi MiEV taxi	142
6.3.	Dalian China	142
6.4.	Huge order in the Philippines in 2013	142
7.	TRACTION BATTERIES, FUEL CELLS, RANGE EXTENDERS	145
7.1.	Traction batteries	145
7.2.	Who is winning in traction batteries and why	147
7.2.1.	The needs have radically changed	147
7.2.2.	It started with cobalt	152
7.2.3.	Great variety of recipes	152
7.2.4.	Other factors	153
7.2.5.	Check with reality	153
7.2.6.	Lithium winners today and soon	153
7.2.7.	Reasons for winning	154
7.2.8.	Lithium polymer electrolyte now important	154

7.2.9.	Winning chemistry	155
7.2.10.	Titanate establishes a place	155
7.2.11.	Laminar structure	156
7.2.12.	Niche winners	156
7.2.13.	Fluid situation	156
8.	FUEL CELLS	163
8.1.	Trials of fuel cell powered vehicles	163
8.2.	Fuel cell 2000 summary of fuel cell bus trials to 2010	167
8.3.	Range extenders	175
9.	MARKET STATISTICS AND FORECASTS	177
9.1.	Past trends	177
9.1.1.	Commercial vehicles	177
9.2.	Buses – historical trends	178
9.3.	School buses – North America	181
9.4.	Past trend in bus production by country	182
9.5.	US population of buses by type	183
9.6.	Transport modes in India	185
9.7.	Motor vehicle production by leading producers	185
9.8.	Global electric bus deliveries to start of 2011	190
9.9.	Forecasts to 2023	190
9.9.1.	Global demand for electric buses and taxis	190
9.9.2.	Manufacturing buses and taxis	190
9.10.	Technology future	191
9.10.1.	Hybrids are key for now	191
9.11.	Future leading manufacturers	193
9.11.1.	Today's leading electric bus manufacturer	193
9.11.2.	Future leading user nation	193
9.11.3.	Buses and taxis a good launch pad for new technologies	194
9.11.4.	Global conventional and electric bus demand 2010-2021	194
9.11.5.	Advantages of electric buses	197
9.12.	Decade of the hybrid	198
9.13.	Liberty Electric Cars	203
9.14.	Basis for forecasting global bus sales by region	205
9.15.	Conventional and electric bus demand and production in China	206
9.16.	Adoption of electric buses vs electric cars	207
9.17.	Global electric vehicle manufacturers by application	208
9.18.	Chinese manufacturers of electric vehicles by application	209
9.18.1.	Taxis	213
9.19.	Adoption of green taxis	221
9.20.	Electric vehicles in East Asia	224
9.21.	Total change	225

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY	229
APPENDIX 2: INTRODUCTION TO ELECTRIC VEHICLES	247

	Tables	Page
Table 1.1	Global demand for electric buses and taxis \$ billion 2012-2023	1
Table 1.2	Global electric bus demand market forecast for 2012-2023, in numbers hybrid and numbers	
	pure electric in thousands with total	5
Table 1.3	Electric vs all buses purchased globally and % penetration of electric 2012-2023 in thousands	
	rounded	7
Table 1.4	Market drivers of global growth of bus and electric bus sales 2011-2021 and impediments	8
Table 1.5	Approximate annual purchase of hybrid electric replacement buses by major cities in the	
	period 2015-2021	9
Table 1.6	Advantages of pure electric buses, enjoyed to some extent by hybrid electric buses	9
Table 1.7	Number, unit price and market value of hybrid electric buses 2012-2023, rounded	10
Table 1.8	Pricing of hybrid buses in 2010 and premium over conventional equivalent	12
Table 1.9	Number, unit price and market value of pure electric buses 2012-2023, rounded	12
Table 1.10	Pricing of pure electric buses in 2010 and premium over conventional equivalent	14
Table 1.11	The total global market \$ billion for electric buses 2012-2023	15
Table 1.12	Market drivers of future purchasing of buses by region and % growth	16
Table 1.13	In China, demand for electric vs all buses in thousands of units and % share 2012-2023	17
Table 1.14	Estimates of hybrid bus transmission sales by manufacturer in 2009	24
Table 1.15	Hybrid bus sales 2008-2013 – forecasted numbers globally for some leading suppliers	24
Table 1.16	Growth rate of market by numbers for buses and electric buses, hybrid and pure electric, 2011-2021	25
Table 1.17	Total number of taxis sold 2012-2023 and number of electric taxis 2012-2023 in thousands and % market share	26
Table 1.18	Global demand for electric taxis 2012–2023 by number, unit value and market value	28
Table 1.19	Demand in China for taxis and electric taxis, thousands and % penetration of taxis in China	20
Table 1.17	and of global electric taxis for 2012-2023	30
Table 1.20	Number, unit value and market value of electric taxis in China 2012-2023	31
Table 1.21	Registered motorised taxis, with driver provided, by region in the world in 2010	32
Table 1.22	Examples of taxi population in leading cities	32
Table 1.23	2009 production statistics	36
Table 2.1	Advantages of pure electric buses, enjoyed to some extent by hybrid electric buses	42
Table 2.2	Challenges of electric buses and taxis	42
Table 2.3	Main market drivers 2011-2021	44
Table 2.4	Electric vehicle highlights 2011-2021	45
Table 2.5	Limitations of trolleybuses and trams	45
Table 3.1	78 examples of manufacturers of hybrid electric buses, with country of headquarters and	
	image	68
Table 3.2	53 Manufacturers of pure electric buses, country of headquarters and image	86
Table 6.1	Eight projects testing pure electric taxis	138
Table 7.1	What is on the way in or out with traction batteries	151

Table 7.2	71 vertically integrated lithium traction battery cell manufacturers, their chemistry, cell	
	geometry and customer relationships (not necessarily orders)	157
Table 9.1	2009 production statistics	178
Table 9.2	Bus production by country in 2002	179
Table 9.3	Global sales of buses by region 2002	182
Table 9.4	Country percentage share of heavy bus and school bus production in 2009	183
Table 9.5	US aircraft, vehicles and other conveyances 1995-2006	184
Table 9.6	US transportation capital stock by mode 1995-2007 current \$ billion	184
Table 9.7	Indian Cities Mode Split, 2007 (Wilbur Smith 2008)	185
Table 9.8	The UK top five bus suppliers in 2006 and 2007	190
Table 9.9	Global demand for electric buses and taxis \$ billion 2012-2023	190
Table 9.10	Global electric bus demand market forecast for 2012-2023, in numbers hybrid and numbers pure electric in thousands with total	195
Table 9.11	Electric vs all buses purchased globally and % penetration of electric 2012-2023 in thousands rounded	196
Table 9.12	Market drivers of global growth of bus and electric bus sales 2011-2022 and impediments	196
Table 9.13	Approximate annual purchase of hybrid electric replacement buses by major cities in the	
	period 2015-2021	197
Table 9.14	Advantages of pure electric buses, enjoyed to some extent by hybrid electric buses	197
Table 9.15	Number, unit price and market value of hybrid electric buses 2012-2023, rounded	199
Table 9.16	Pricing of hybrid buses in 2010 and premium over conventional equivalent	201
Table 9.17	Number, unit price and market value of pure electric buses 2012-2023, rounded	201
Table 9.18	Pricing of pure electric buses in 2010 and premium over conventional equivalent	203
Table 9.19	The total global market \$ billion for electric buses 2012-2023	204
Table 9.20	Market drivers of future purchasing of buses by region and % growth	205
Table 9.21	In China, demand for electric vs all buses in thousands of units and % share 2012-2023	207
Table 9.22	Estimates of hybrid bus transmission sales by manufacturer in 2009	212
Table 9.23	Hybrid bus sales 2008-2013 - forecasted numbers globally for some leading suppliers	212
Table 9.24	Growth rate of market by numbers for buses and electric buses, hybrid and pure electric, 2011-2021	213
Table 9.25	Total number of taxis sold 2012-2023 and number of electric taxis 2012-2023 in thousands	
	and % market share	213
Table 9.26	Global demand for electric taxis 2012-2023 by number, unit value and market value	216
Table 9.27	Demand in China for taxis and electric taxis, thousands and % penetration of taxis in China	
	and of global electric taxis for 2012-2023	218
Table 9.28	Number, unit value and market value of electric taxis in China 2012-2023	219
Table 9.29	Registered motorised taxis, with driver provided, by region in the world in 2010	220
Table 9.30	Examples of taxi population in leading cities	220
Table 9.31	The percentage value share by country of the East Asian electric vehicle market 2011-2021	224

	Figures	Page
Fig. 1.1	Global market for electric taxis based on regular cars as a percentage of the total electric car	
	market in 2021 at ex-factory prices	2
Fig. 1.2	Global electric bus demand market forecast 2012-2023, in numbers hybrid and pure electric in	
	thousands	ć
Fig. 1.3	Electric vs all buses purchased globally of units 2012-2023 rounded	8
Fig. 1.4	Bus size vs fuel consumption	10
Fig. 1.5	Number, unit price and market value of hybrid electric buses 2012-2023, rounded	1
Fig. 1.6	Number, unit price and market value of pure electric buses 2012-2023, rounded	13
Fig. 1.7	The total global market \$ billion for electric buses 2012-2023	15
Fig. 1.8	Number of buses purchased in 2011 by region	10
Fig. 1.9	In China, demand for electric vs all buses in thousands of units and % share 2012-2023	15
Fig. 1.10	Kent electric city bus from China	18
Fig. 1.11	Hino Blue Ribbon hybrid diesel electric bus in China	18
Fig. 1.12	Electric bus in China	18
Fig. 1.13	Bus by Tongkun New Energy Technologies Co. and FAW Bus and Coach Co	19
Fig. 1.14	Electric pick-up truck from China Vehicles Company	19
Fig. 1.15	Garbage collecting electric car by Shandong Shunxing Machinery	20
Fig. 1.16	Approximate number of manufacturers of electric vehicles worldwide by applicational category	
	in 2011	20
Fig. 1.17	The approximate number of Chinese manufacturers of electric vehicles by applicational	
	category in 2011	2
Fig. 1.18	Total number of taxis sold 2012-2023 and number of electric taxis 2012-2023 in thousands	27
Fig. 1.19	Cumulative number of hybrid car models and projected number of hybrid sales to 2020	28
Fig. 1.20	Global demand for electric taxis 2012-2023	29
Fig. 1.21	Number of taxis sold 2012-2023 and number of electric taxis in China 2012-2023 in thousands	30
Fig. 1.22	Number, unit value and market value of electric taxis in China 2012-2023	3
Fig. 1.23	Registered motorised taxis, with driver provided, by region in the world in 2010	32
Fig. 1.24	Examples of taxi population in leading cities	33
Fig. 1.25	MAN Lion urban bus with supercapacitors and no traction battery	38
Fig. 2.1	Isuzu sales of buses 2005-2009	47
Fig. 2.2	Electric bus in Nepal	48
Fig. 2.3	PhUV pure electric bus	48
Fig. 2.4	Tara pure electric Shuttle	49
Fig. 2.5	A Volvo hybrid powertrain for buses is shown below	52
Fig. 2.6	Orion VII NG hybrid bus	55
Fig. 2.7	Possible evolution of affordable, mainstream electric buses showing the convergence of hybrid	
	and pure electric technologies as the conventional internal combustion engine ICE is	
	abandoned	5.

Fig. 2.8	Rome trolleybus raising its trolley arms to switch from battery to overhead-wire power. In the	
	view on the right the pick-up has yet to properly locate itself around the overhead wires	57
Fig. 2.9	Opbrid pantograph for fast recharging	59
Fig. 2.10	Hydrogen fuel cell for buses etc from UTC Power	60
Fig. 2.11	Ultracapacitor layout in a MAN hybrid bus	60
Fig. 2.12	In-road charging of small buses in Turin, Italy	62
Fig. 2.13	Straddling bus concept	63
Fig. 3.1	Pure electric bus in 1907	65
Fig. 3.2	Proposal for new London double decker hybrid electric bus	66
Fig. 3.3	Capoco driverless electric bus concept	66
Fig. 3.4	Insectbus concept	67
Fig. 3.5	78 examples of hybrid electric bus producers by country of headquarters	84
Fig. 3.6	78 examples of hybrid electric bus producers by continent of headquarters	84
Fig. 3.7	Sample of 53 pure electric bus manufacturers by continent	95
Fig. 3.8	Sample of 53 pure electric bus manufacturers by country	95
Fig. 3.9	Superbus	96
Fig. 3.10	Trend of size of the largest (in red) and smallest (in green) fuel cell sets used in 98 bus trials	
	worldwide over the last twenty years.	97
Fig. 3.11	Evolution of traction batteries and range extenders for large hybrid electric vehicles as they	
	achieve longer all-electric range over the next decade.	99
Fig. 3.12	Three generations of lithium-ion battery with technical features that are sometimes	
	problematical	100
Fig. 4.1	Alexander Dennis Enviro400 hybrid bus configuration	102
Fig. 4.2	Hefei pure electric bus demonstration operation start ceremony	103
Fig. 4.3	Daimler bus production locations	104
Fig. 4.4	Unit sales of the Daimler bus division 2008-9	105
Fig. 4.5	Daimler bus sales by global region H1 2009	105
Fig. 4.6	Daimler bus market share and market share of leading competitors in 2007	106
Fig. 4.7	Daimler's technology roadmap for launching new bus technologies to 2015	106
Fig. 4.8	HyFLEET:CUTE fuel cell bus project in Europe and the US	107
Fig. 4.9	Hino hybrid bus	107
Fig. 4.10	Hino "no plug in" bus.	108
Fig. 4.11	The positioning of the planned Toyota fuel cell hybrid bus FCHV-BUS	108
Fig. 4.12	lveco pure electric bus elements	109
Fig. 4.13	lveco configurations	109
Fig. 4.14	ISE lean burn hybrid bus	110
Fig. 4.15	ISE initial hybrid configuration	110
Fig. 4.16	MAN Lion urban hybrid bus	111
Fig. 4.17	MAN Lion urban hybrid bus in section showing supercapacitors (ultracapacitors) in place of	
	traction battery	111
Fig. 4.18	Ryobi solar assisted electric bus	115
Fig. 4.19	The Bladon Jets microturbine range extender is the size of two large cans of beans	116
Fig. 4.20	Jaguar concept car demonstrated late 2010	116

Fig. 4.21	Tata electric roadmap of launches	117
Fig. 4.22	Volvo presentation at eCarTec Munich where it advocated hybrid urban buses after claiming to	
	have delivered more pure electric buses than anyone else (500 of them)	118
Fig. 4.23	A Zhongtong pure electric bus	119
Fig. 5.1	Adura's MESA Powertrain	121
Fig. 5.2	Azure Dynamics powertrain	125
Fig. 5.3	BAE Systems Hybridrive series hybrid bus powertrain	127
Fig. 5.4	Eaton hybrid powertrain	128
Fig. 5.5	ISE Corp hybrid powertrain	129
Fig. 5.6	SIM Drive in wheel traction	129
Fig. 5.7	SR drives series parallel power unit	131
Fig. 5.8	ThunderVolt hybrid drive train for ISE buses	132
Fig. 6.1	Taxi fire caused by a bad lithium-ion battery in a Chinese electric taxi	135
Fig. 6.2	Mitsubishi Minicab i-MiEV	141
Fig. 6.3	Mitsubishi MiEV Minicab	142
Fig. 6.4	The Terra Motors e-trike	144
Fig. 7.1	Traction battery experience curve for pure electric battery electric vehicles	145
Fig. 7.2	Volkswagen forecasts the following cost trend for the favoured types of traction battery	146
Fig. 7.3	Progress in improving energy density vs power density of traction batteries	146
Fig. 7.4	Comparison of benefits and challenges for various types of traction battery	147
Fig. 7.5	Geely IG solar car	148
Fig. 7.6	Japanese ten meter long deep sea cruising AUV, the URASHIMA	148
Fig. 7.7	Bionic dolphin	149
Fig. 7.8	Deepflight Merlin	149
Fig. 7.9	Cri-Cri pure electric stunt plane new in 2010	150
Fig. 7.10	Oshkosh truck	150
Fig. 7.11	Approximate percentage of manufacturers offering traction batteries with less cobalt vs those	
	offering ones with no cobalt vs those offering both. We also show the number of suppliers that	
	offer lithium iron phosphate versions.	157
Fig. 8.1	Series hybrid bus being developed by Mobile Energy Solutions	164
Fig. 8.2	MAN hybrid fuel cell bus	164
Fig. 8.3	Van Hool fuel cell buses on trial	165
Fig. 8.4	Fuel cell powered Hyundai bus on trial in Australia	165
Fig. 8.5	Mercedes Benz fuel cell bus trial	166
Fig. 9.1	World heavy bus production by country and type for 2008-9	180
Fig. 9.2	North American sales of school buses 2000-2009	182
Fig. 9.3	Daimler Group vehicle production by type in 2009	186
Fig. 9.4	Fiat Group vehicle production by type in 2009	187
Fig. 9.5	GAZ Group vehicle production by type in 2009	187
Fig. 9.6	General Motors vehicle production by type in 2009	188
Fig. 9.7	Hyundai Group vehicle production by type in 2009	188
Fig. 9.8	Mahindra Group vehicle production by type in 2009	188
Fin 99	Navistar Group vehicle production by type in 2009	189

Fig. 9.10	Tata Group vehicle production in 2009	189
Fig. 9.11	Volvo group production in 2009	189
Fig. 9.12	Global market for electric taxis based on regular cars as a percentage of the total electric car	
	market in 2021	191
Fig. 9.13	Global electric bus demand market forecast 2012-2023, in numbers hybrid and pure electric in	
	thousands	195
Fig. 9.14	Electric vs all buses purchased globally of units 2012-2023 rounded	196
Fig. 9.15	Bus size vs fuel consumption	198
Fig. 9.16	Number, unit price and market value of hybrid electric buses 2012-2023, rounded	200
Fig. 9.17	Number, unit price and market value of pure electric buses 2012-2023, rounded	202
Fig. 9.18	The total global market \$ billion for electric buses 2012-2023	204
Fig. 9.19	Number of buses purchased in 2011 by region	206
Fig. 9.20	In China, demand for electric vs all buses in thousands of units and % share 2012-2023	207
Fig. 9.21	Approximate number of manufacturers of electric vehicles worldwide by applicational category	
	in 2011	208
Fig. 9.22	The approximate number of Chinese manufacturers of electric vehicles by applicational	
	category in 2011	209
Fig. 9.23	Total number of taxis sold 2012-2023 and number of electric taxis 2012-2023 in thousands	214
Fig. 9.24	Cumulative number of hybrid car models and projected number of hybrid sales to 2020	215
Fig. 9.25	Global pure electric car sales 2009-2020 excluding golf cars and cumulative number of new	
	models since 2000	215
Fig. 9.26	Global demand for electric taxis 2012-2023	217
Fig. 9.27	Number of taxis sold 2012-2023 and number of electric taxis in China 2012-2023 in thousands	218
Fig. 9.28	Number, unit value and market value of electric taxis in China 2012-2023	219
Fig. 9.29	Registered motorised taxis, with driver provided, by region in the world in 2010	220
Fig. 9.30	Examples of taxi population in leading cities	221
Fig. 9.31	The percentage value share by country of the East Asian electric vehicle market 2011	224
Fig. 9.32	The percentage value share by country of the East Asian electric vehicle market 2021	225