

Range Extenders for Electric Vehicles Land, Water & Air 2012-2022

Analysis of technologies, players and market forecasts

By Dr Peter Harrop

www.IDTechEx.com

Contents

Page

1.	EXECUTIVE SUMMARY AND CONCLUSIONS	1
1.1.	Range extender market in 2022	1
1.2.	EV Market 2012 and 2022	2
1.3.	Ten year forecast for electric cars, hybrids and their range extenders	5
1.4.	Hybrid and pure electric vehicles compared	6
1.5.	Hybrid market drivers	6
1.6.	What will be required of a range extender 2012-2022	7
1.7.	Three generations of range extender	8
1.8.	Why range extenders need lower power over the years	11
1.9.	Energy harvesting – mostly ally not alternative	14
1.10.	Key trends for range extended vehicles	14
1.11.	Combining Heating and Range-Extension for Electric Vehicles	16
1.12.	Emergency range extenders	16
2.	INTRODUCTION	19
2.1.	Types of electric vehicle	19
2.2.	Many fuels	24
2.3.	Born electric	25
2.4.	Pure electric vehicles are improving	25
2.5.	Series vs parallel hybrid	28
2.6.	Modes of operation of hybrids	28
2.6.1.	Plug in hybrids	28
2.6.2.	Charge-depleting mode	29
2.6.3.	Blended mode	29
2.6.4.	Charge-sustaining mode	30
2.6.5.	Mixed mode	30
2.7.	Microhybrid is a misnomer	30
2.8.	Deep hybridisation	31
2.9.	Battery cost and performance are key	33
2.10.	Hybrid price premium	35
2.11.	Progressing the REEV	36
2.12.	What is a range extender?	37
2.12.1.	First generation range extender technology	37
2.12.2.	Second generation range extender technology	37
2.12.3.	Radically new approaches - Hüttlin range extender	38
2.12.4.	Third generation range extender technology	39
2.13.	Market position of fuel cell range extenders	40
2.14.	Energy harvesting on and in electric vehicles	41
2.15.	Tradeoff of energy storage technologies	43

2.16.	Trend to high voltage	44
2.17.	Component choices for energy density/ power density	45
2.18.	Fuel cells rescued by batteries	46
2.19.	PEM fuel cells	49
2.20.	Trend to distributed components	50
2.21.	Trend to flatness then smart skin	51
3.	ELECTRIC VEHICLE MARKET OVERVIEW	53
3.1.	The whole picture	53
3.1.1.	Synergies	53
3.1.2.	What is excluded?	53
3.2.	Largest sectors	54
3.3.	Numbers of manufacturers	60
3.4.	Heavy industrial sector	61
3.5.	Buses	62
3.6.	The light industrial and commercial sector	62
3.7.	Two wheel and allied vehicles	63
3.8.	Cars	65
3.9.	Golf	67
3.10.	Military	67
3.11.	Marine	67
3.12.	Other	68
3.13.	Market for EV components	68
3.14.	Timelines	69
3.15.	Watch Japan, China and Korea	70
3.16.	Vacillation by some governments	71
3.17.	Healthy shakeout of the car industry	72
3.18.	Full circle back to pure EVs	72
3.19.	Winning strategies	72
4.	MARKETS AND TECHNOLOGIES FOR REEVS	75
4.1.	Range extenders for land craft	76
4.2.	Range Extenders for electric aircraft	76
4.2.1.	Military aircraft	76
4.3.	Comparisons	77
4.4.	Fuel cells in aviation	80
4.5.	Civil aircraft	82
4.6.	Potential for electric airliners	84
4.7.	Range extenders for marine craft	85
5.	RANGE EXTENDER DEVELOPERS AND MANUFACTURERS	89

89

5.1.

Advanced Magnet Laboratory USA

5.2.	Aerovironment / Protonex Technology USA	90
5.3.	Austro Engine Austria	94
5.4.	Bladon Jets UK	95
5.5.	BMW Germany	98
5.6.	Capstone Turbine Corporation USA	98
5.7.	Clarian Laboratories USA	101
5.8.	Compound Rotary Engines UK	102
5.9.	Daimler AG inc Mercedes Benz Germany	102
5.10.	DLR German Aerospace Center Germany	103
5.10.1.	Free piston range extenders	105
5.11.	EcoMotors	114
5.12.	Ener1 USA	115
5.13.	FEV USA	115
5.14.	Flight Design Germany	116
5.15.	Getrag Germany	117
5.16.	GSE USA	117
5.17.	Intelligent Energy UK	119
5.18.	Lotus Engineering UK	120
5.19.	MAHLE Powertrain UK	124
5.20.	Polaris Industries Switzerland	129
5.21.	Powertrain Technologies UK	132
5.22.	Proton Power Systems plc UK/Germany	132
5.23.	Ricardo UK	133
5.24.	Urbee Canada	133
5.25.	Volkswagen Germany	134
5.26.	Warsaw University of Technology, Poland	137
6.	RANGE EXTENDER INTEGRATORS	139
6.1.	ACAL Energy UK	139
6.2.	Altria Controls USA	139
6.3.	Ashok Leyland India	140
6.4.	Audi Germany	140
6.5.	AVL Austria	141
6.6.	Azure Dynamics USA	141
6.7.	BAE Systems UK	142
6.8.	BMW Germany	143
6.9.	Boeing Dreamworks USA	143
6.10.	Chrysler USA	144
6.11.	DesignLine New Zealand	146
6.12.	EADS Germany	146
6.13.	ENFICA-FC Italy	147
6.14.	Ford USA	154
6.15.	Frazer-Nash UK	156

6.16.	General Motors including Opel	157
6.17.	Honda Japan	159
6.18.	Howaldtswerke-Deutsche Werft Germany	160
6.19.	Hyundai Korea	161
6.20.	Igor Chak Russia	163
6.21.	Jaguar Land Rover UK	164
6.22.	Lange Aviation Germany	166
6.23.	Langford Performance Engineering Ltd UK	166
6.24.	Marion HSPD USA	167
6.25.	Pipistrel Slovenia	168
6.26.	SAIC China	169
6.27.	Skyspark Italy	170
6.28.	Suzuki Japan	171
6.29.	Tata Motors India	172
6.30.	Toyota Japan	173
6.31.	Turtle Airships Spain	179
6.32.	University of Bristol UK	180
6.33.	Université de Sherbrooke Canada	180
6.34.	University of Stuttgart Germany	182
6.35.	Vision Motor Corporation USA	183
6.36.	Volvo Sweden/ China	184
6.37.	Yo-Avto Russia	187
7.	MARKET DRIVERS AND FORECASTS	189
7.1.	Market drivers and impediments	189
7.2.	Funding as a market driver	190
7.3.	EV Market 2011 and 2021	192
7.4.	Ten year forecast for electric cars, hybrids and their range extenders	193
7.5.	Three generations of range extender	194

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY 199

APPENDIX 2: FUEL CELL 2000 SUMMARY OF FUEL CELL BUS TRIALS TO 2010	217

Tables

	Tables	Page
Table 1.1	Numbers of EVs, in thousands, sold globally, 2012-2022, by applicational sector	2
Table 1.2	Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2022, by	
	applicational sector, rounded	3
Table 1.3	Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2022, by applicational	
	sector, rounded	4
Table 1.4	Number of hybrid and pure electric cars sold and those that plug in thousands 2012-2022	5
Table 1.5	Some primary hybrid market drivers	7
Table 1.6	Three generations of range extender with examples of construction, manufacturer and power	
	output	9
Table 3.1	Main market drivers 2012-2022	55
Table 3.2	Numbers of EVs, in thousands, sold globally, 2012-2022, by applicational sector	56
Table 3.3	Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2022, by	
	applicational sector, rounded	57
Table 3.4	Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2022, by applicational	
	sector, rounded	59
Table 3.5	Approximate number of manufacturers of electric vehicles worldwide in 2010 by application	
	with numbers for China	60
Table 3.6	Global sales of heavy industrial EVs by numbers, ex factory unit price and total value 2012-	
	2022, rounded	61
Table 3.7	Global sales of buses, ex factory unit price and total value 2012-2022, rounded	62
Table 3.8	Global sales of light industrial and commercial EVs excluding buses by numbers thousands,	
	ex factory unit price in thousands of dollars and total value in billions of dollars 2012-2022,	
	rounded	62
Table 3.9	Global sales of EVs used as mobility aids for the disabled by number, ex factory unit price in	
	thousands of dollars and total value in billions of dollars, 2012-2022, rounded	63
Table 3.10	Global sales of two wheel and allied EVs number, ex factory unit price in thousands of dollars	
	and total value in billions of dollars 2012-2022, rounded	65
Table 3.11	Global sales of electric cars number thousands, ex factory unit price in thousands of dollars	
	and total value in billions of dollars 2012-2022, rounded	65
Table 3.12	Value of the hybrid, pure electric and total electric car market in billions of dollars 2010-2020	66
Table 3.13	Number of hybrid and pure electric cars plugged in and the total number in thousands 2011-	
	2021	66
Table 3.14	Global sales of electric golf cars and motorised caddies in number thousands, ex factory unit	
	price in thousands of dollars and total value in billions of dollars 2012-2022, rounded	67
Table 3.15	Global sales of electric military vehicles in number thousands, ex factory unit price in	
	thousands of dollars and total value in billions of dollars 2012-2022, rounded	67
Table 3.16	Global sales of electric marine craft in number thousands, ex factory unit price in thousands	
	of dollars and total value in billions of dollars 2012-2022, rounded	68

Table 3.17	Global sales of other electric vehicles (including civil aircraft and robot) in number thousands,	
	ex factory unit price in thousands of dollars and total value in billions of dollars 2012-2022,	
	rounded	68
Table 3.18	Components and subsystems fitted in new electric vehicles 2010-2020 in thousands	69
Table 3.19	Highlights 2010-2020	69
Table 5.1	Data for RQ-11A version of AeroVironment Raven	91
Table 7.1	Primary hybrid market drivers	189
Table 7.2	Probable global market for electric vehicle range extenders in 2021 by power, number and	
	market value for small, medium and large range extenders	191
Table 7.3	Forecasts of global sales of electric vehicles by numbers thousands 2011-2021	192
Table 7.4	Forecast for car, hybrid car and car range extender sales globally in thousands 2012-2022	193
Table 7.5	Three generations of range extender with examples of construction, manufacturer and power	
	output	195

Figures

Page

Fig. 1.1	Numbers of EVs, in thousands, sold globally, 2012-2022, by applicational sector	2
Fig. 1.2	Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2022, by	
0	applicational sector, rounded	3
Fig. 1.3	Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2022, by applicational sector,	
-	rounded	4
Fig. 1.4	Advantages and disadvantages of hybrid vs pure electric vehicles	6
Fig. 1.5	Indicative trend of charging and electrical storage for large hybrid vehicles over the next decade	8
Fig. 1.6	Evolution of construction of range extenders over the coming decade	9
Fig. 1.7	Examples of range extender technology in the shaft vs no shaft categories	10
Fig. 1.8	Illustrations of range extender technologies over the coming decade with "gen" in red for those	
	that have inherent ability to generate electricity	10
Fig. 1.9	Trend of size of largest (in red) and smallest (in green) fuel cell sets used in bus trials	
	worldwide over the last twenty years	11
Fig. 1.10	Evolution of lower power range extenders for large vehicles	12
Fig. 1.11	Three generations of lithium-ion battery	13
Fig. 1.12	The most powerful energy harvesting in vehicles	14
Fig. 2.1	ThunderVolt hybrid bus	19
Fig. 2.2	BAE Systems powertrain in a bus	20
Fig. 2.3	Hybrid bus powertrain	20
Fig. 2.4	Hybrid car powertrain using CNG	21
Fig. 2.5	Mitsubishi hybrid outdoor forklift replacing a conventional ICE vehicle	22
Fig. 2.6	Hybrid military vehicle that replaces a conventional ICE version	22
Fig. 2.7	Hybrid sports boat replacing a conventional ICE version	23
Fig. 2.8	CAF-E hybrid motorcycle design based on a Prius type of drivetrain	23
Fig. 2.9	Hybrid tugboat replacing a conventional ICE version to meet new pollution laws and provide	
	stronger pull from stationary	24
Fig. 2.10	Some hybrid variants	28
Fig. 2.11	Evolution of plug in vs mild hybrids	29
Fig. 2.12	Trend to deep hybridisation	31
Fig. 2.13	Evolution of hybrid structure	32
Fig. 2.14	Three generations of lithium-ion traction battery	33
Fig. 2.15	Battery price assisting price of hybrid and pure electric vehicles as a function of power stored	34
Fig. 2.16	Probable future improvement in parameters of lithium-ion batteries for pure electric and hybrid	0.4
E: 0.4E	EVs	34
Fig. 2.17	Cleaner hybrid bus promotion	35
Fig. 2.18	Price premium for hybrid buses	35
Fig. 2.19	Main modes of rotational energy harvesting in vehicles	42
Fig. 2.20	Main forms of photovoltaic energy harvesting on vehicles	42
Fig. 2.21	Maximum power from the most powerful forms of energy harvesting on or in vehicles	43

Fig. 2.22	Hybrid bus with range improved by a few percent using solar panels	43
Fig. 2.23	Comparison of battery technologies	44
Fig. 2.24	Possible trend in battery power storage and voltage of power distribution	45
Fig. 2.25	Comparison of energy density of power components for hybrid vehicles	46
Fig. 2.26	Trend of size of the largest (in red) and smallest (in green) fuel cell sets used in 98 bus trials	
	worldwide over the last twenty years.	47
Fig. 2.27	Evolution of traction batteries and range extenders for large hybrid electric vehicles as they	
	achieve longer all-electric range over the next decade.	48
Fig. 2.28	Three generations of lithium-ion battery with technical features that are sometimes	
	problematical	49
Fig. 2.29	The principle of the Proton Exchange Membrane fuel cells	50
Fig. 2.30	Mitsubishi view of hybrid vehicle powertrain evolution	50
Fig. 2.31	Flat lithium-ion batteries for a car and, bottom, UAVs	51
Fig. 2.32	Supercapacitors that facilitate fast charging and discharging of the traction batteries are spread	
	out on a bus roof	51
Fig. 2.33	Asola photovoltaic panel on Fisker hybrid sports car.	52
Fig. 3.1	Numbers of EVs, in thousands, sold globally, 2012-2022, by applicational sector	57
Fig. 3.2	Ex factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2022, by	
	applicational sector, rounded	58
Fig. 3.3	Ex factory value of EVs, in billions of US dollars, sold globally, 2012-2022, by applicational sector,	
	rounded	59
Fig. 3.4	Approximate number of manufacturers of electric vehicles worldwide by application in 2010	60
Fig. 3.5	Number of manufacturers of electric vehicles in China by application in 2010	61
Fig. 3.6	Energy per 100 kilometers per person for different on-road travel options.	64
Fig. 3.7	The Mission Motors Mission One 150 mph, 150 mile range electric motorcycle	65
Fig. 4.1	Northrop Grumman surveillance airship with fuel cell range extender and energy harvesting for	
	virtually unlimited range	77
Fig. 4.2	Light utility aircraft – power-systems weight comparison	78
Fig. 4.3	Light primary trainer – power-systems weight comparison	78
Fig. 4.4	Battery and jet fuel loading	79
Fig. 4.5	Pilot plus payload vs range for fuel cell light aircraft and alternatives	81
Fig. 4.6	Total weight vs flight time for PEM fuel cell planes	81
Fig. 4.7	Takeoff gross weight breakdowns. Left: Conventional reciprocating-engine-powered airplane.	
	Right: Fuel-cell-powered airplane.	82
Fig. 4.8	JAMSTEC Fuel Cell Underwater Vehicle FCUV	86
Fig. 4.9	Soliloquy superyacht with multiple energy harvesting including solar sails that fold like a	
-	penknife	87
Fig. 5.1	AeroVironment Raven	90
Fig. 5.2	Raven enhancement	91
Fig. 5.3	Aqua Puma	92
Fig. 5.4	AeroVironment Helios	93
Fig. 5.5	Global Observer first flight August 2010	93
Fig. 5.6	Bladon Jets gas turbine range extender for cars and light aircraft and the Jaguar CX75	96

Fig. 5.7	Jaguar Land Rover	96
Fig. 5.8	Latest Bladon Jets design	97
Fig. 5.9	Capstone microturbine	99
Fig. 5.10	Capstone turbine in a Japanese bus	99
Fig. 5.11	Various sizes of Capstone MicroTurbines	100
Fig. 5.12	Clarian Laboratories' range extender	101
Fig. 5.13	Daimler roadmap for commercial vehicles	102
Fig. 5.14	DLR fuel cell and the electric A320 airliner nose wheel it drives when the airliner is on the	
	ground.	104
Fig. 5.15	Holstenblitz fuel cell car trial	105
Fig. 5.16	A new power generator for hybrid vehicles	106
Fig. 5.17	EcoMotors opposing piston range extender	114
Fig. 5.18	FEV extreme downsized range extender engine	116
Fig. 5.19	GSE mini diesel driving a propeller	118
Fig. 5.20	Greg Stevenson (left) and Gene Sheehan, Fueling Team GFC contender, with GSE Engines.	118
Fig. 5.21	Block diagram of the Frank/Stevenson parallel hybrid system	119
Fig. 5.22	Fuel cell taxi trials	120
Fig. 5.23	Fuel cell development	120
Fig. 5.24	New two cylinder range extender from Lotus Engineering	121
Fig. 5.25	Lotus hybrid powertrain and second generation range extender ICE	122
Fig. 5.26	Lotus three and two cylinder range extenders	123
Fig. 5.27	Proton EMAS	123
Fig. 5.28	MAHLE range extenders	126
Fig. 5.29	MAHLE compact range extender	127
Fig. 5.30	MAHLE range extender at EVS26 2012	128
Fig. 5.31	Polaris REX range extender left with generator, right with peripherals as well	131
Fig. 5.32	Location of technical advances in Polaris range extender	131
Fig. 5.33	Ricardo Wolverine engine for hybrid UAVs	133
Fig. 5.34	Volkswagen XL1 hybrid concept	135
Fig. 6.1	Adura powertrain with microturbine.	140
Fig. 6.2	Ashok Leyland CNG hybrid bus	140
Fig. 6.3	Azure Dynamics hybrid powertrain	141
Fig. 6.4	Bus with BAE Systems hybrid power train	143
Fig. 6.5	Boeing fuel cell aircraft	144
Fig. 6.6	DesignLine bus with Capstone turbine range extender.	146
Fig. 6.7	ENFICA FC two seater fuel cell plane	147
Fig. 6.8	Ford Lincoln hybrid car has no price premium over the conventional version	155
Fig. 6.9	Frazer-Nash EREV powertrain	156
Fig. 6.10	Namir EREV Supercar	157
Fig. 6.11	Proton Exora	157
Fig. 6.12	Chevrolet Volt powertrain	158
Fig. 6.13	Honda IMA	159
Fig. 6.14	German fuel cell powered diesel submarine	160

Fig. 6.15	Hyundai Blue hybrid car	161
Fig. 6.16	Hyundai fuel cell powered car	162
Fig. 6.17	Igot Chak hybrid motorcycle	164
Fig. 6.18	Hybrid Land Rover trial	165
Fig. 6.19	Planned Jaguar supercar	165
Fig. 6.20	The LPE REEV concept car	167
Fig. 6.21	Marion Hyper-Sub Submersible Powerboat	168
Fig. 6.22	Skyspark in flight 2009	170
Fig. 6.23	Suzuki Burgman fuel cell scooter	171
Fig. 6.24	Suzuki concept fuel cell motorcycle headed for production	171
Fig. 6.25	Tata Motors roadmap for hybrid commercial vehicles	173
Fig. 6.26	Toyota Prius hybrid car is the world's best selling electric car	173
Fig. 6.27	Toyota hybrid forklift	174
Fig. 6.28	Turtle Airship landed on water in concept drawing	179
Fig. 6.29	Glassock hybrid set up for dynamometer testing	180
Fig. 6.30	Hybrid quad bike	181
Fig. 6.31	Hydrogenius	182
Fig. 6.32	Tyrano hybrid tractor	183
Fig. 6.33	Volvo hybrid bus	184
Fig. 6.34	Volvo technical concept 1	185
Fig. 6.35	Volvo technical concept 2	186
Fig. 6.36	Volvo technical concept 3	187
Fig. 7.1	Forecast for car, hybrid car and car range extender sales globally in thousands 2012-2022	193
Fig. 7.2	Indicative trend of charging and electrical storage for large hybrid vehicles over the next	
	decade.	194
Fig. 7.3	Evolution of construction of range extenders over the coming decade	195
Fig. 7.4	Examples of range extender technology in the shaft vs no shaft categories	196
Fig. 7.5	Illustrations of range extender technologies over the coming decade with "gen" in red for those	
	that have inherent ability to generate electricity	196