Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS | 1
 1.1. Forecast for numbers of LEVs sold globally to 2025 | 2
 1.2. Pricing | 2
 1.3. Market value forecast | 3
 1.4. Reasons for growth
 1.4.1. Competition and profitability | 6
 1.4.2. Opportunities | 6
 1.4.3. Typical requirement | 7

2. INTRODUCTION TO LIGHT ELECTRIC VEHICLES | 9
 2.1. Definition of a light electric vehicle | 9
 2.2. E-motorcycles
 2.2.1. E-bikes and e-motorcycles compared | 10
 2.2.2. Record-breaking e-motorcycles | 12
 2.2.3. Motorcycle sales in Colombia | 14
 2.3. Choices of LEV
 2.3.1. Rocket drag bike USA | 24
 2.3.2. Moveo foldable scooter Hungary | 25
 2.4. The Industry of LEVs
 2.4.1. Taiwan and China | 26
 2.4.2. Outside Taiwan and China | 27
 2.4.3. Too much cost cutting | 27
 2.5. Tricycles to reduce accidents and help policing
 2.5.1. Twikke Europe | 30

3. REQUIREMENTS FOR LEVS | 33
 3.1. How good does it have to be? | 33
 3.2. What retail price? | 34

4. TYPES OF LEV AND REGULATIONS | 37
 4.1. What is an electric bicycle?
 4.1.1. Pedelec | 37
 4.1.2. Power on Demand bikes and other categories | 38
 4.1.3. Electric vehicles for disabled and others | 38
 4.1.4. Power restriction | 38
 4.1.5. Notable regulations | 38
 4.2. Universal Technical Terms for Ebikes | 39
5. MOBILITY FOR THE DISABLED – THE SECTOR WITH THE MOST COMPELLING AND ENDURING NEED

5.1. The demographic time-bomb

5.1.1. Ageing population and the dependent elderly

5.1.2. Laws make mobility easier

5.2. Types of mobility vehicle

5.2.1. Growth by new market segments

5.2.2. Interchina Industry Group China

5.2.3. Solar powered power chair in 2013

5.3. Market drivers

5.3.1. Geographical distribution

5.3.2. Needs creating new segments

5.3.3. What is driving regional differences?

5.3.4. Zhejiang R&P Industry China

5.3.5. Pride Mobility, USA

5.4. Listing of manufacturers

5.5. Market forecasts 2012-2022

5.5.1. Growth by creating new markets

6. LEV TECHNOLOGIES

6.1. Battery Technology – as currently used in LEVs, on a pack level

6.1.1. SVRLA strengths and weaknesses

6.1.2. Battery packagers

6.1.3. Battery Packs from China

6.1.4. Power management and user interface

6.1.5. Electric motor controller

6.1.6. Motor Controls:

6.1.7. Accessory features:

6.1.8. Chinese Coin Charger

6.1.9. Energy harvesting

6.1.10. User Interface

6.1.11. Real Time Data Logging and Reporting

6.1.12. Infrastructure challenges and Government incentives

6.2. Examples of battery suppliers to this sector

6.2.1. Advanced Battery Technologies (ABAT) China

6.2.2. Leyden Energy USA

6.2.3. PowerGenix USA

6.2.4. ReVolt Technologies Ltd Switzerland

6.2.5. Toshiba Japan

7. LEV STANDARDS AND COMPONENT INDUSTRIAL TRENDS

7.1. Standards Efforts

7.2. Component industry trends
7.3. LEV electric motor industry

7.4. Controller industry

7.5. Wiring harness and connectors

8. LEV MARKETS, MARKET DRIVERS AND FORECASTS

8.1. Markets by territory
 8.1.1. China
 8.1.2. Japan
 8.1.3. India
 8.1.4. Europe
 8.1.5. USA
 8.1.6. Worldwide

8.2. Markets by providers

8.3. Bicycle Brands with ebikes or expected to have ebikes soon:
 8.3.1. USA
 8.3.2. European Bike Brands
 8.3.3. Netherlands brands:

8.4. Channels of distribution

8.5. Market forecasts and drivers

8.6. Drivers of market
 8.6.1. Fuel price
 8.6.2. Fuel availability
 8.6.3. Efficiency
 8.6.4. Cost of government subsidy
 8.6.5. Traffic congestion
 8.6.6. Parking congestion
 8.6.7. Urbanization
 8.6.8. Air pollution
 8.6.9. Government regulation
 8.6.10. Personal responsibility
 8.6.11. Total cost of ownership
 8.6.12. Aging populations
 8.6.13. Living in apartments
 8.6.14. Negative factors
 8.6.15. Bans in Malaysia and elsewhere?

9. ELECTRIC SCOOTERS

9.1. Market dynamics

9.2. Dominated by East Asia for the next decade
 9.2.1. Brazil
 9.2.2. China
 9.2.3. Europe
 9.2.4. France
<table>
<thead>
<tr>
<th>Section</th>
<th>Country</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.5.</td>
<td>Germany</td>
<td>97</td>
</tr>
<tr>
<td>9.2.6.</td>
<td>India</td>
<td>98</td>
</tr>
<tr>
<td>9.2.7.</td>
<td>Japan</td>
<td>101</td>
</tr>
<tr>
<td>9.2.8.</td>
<td>Taiwan</td>
<td>105</td>
</tr>
<tr>
<td>9.2.9.</td>
<td>Korea</td>
<td>106</td>
</tr>
<tr>
<td>9.3.</td>
<td>Retro scooters</td>
<td>107</td>
</tr>
<tr>
<td>9.4.</td>
<td>Push scooters</td>
<td>109</td>
</tr>
<tr>
<td>9.5.</td>
<td>Folding scooters and energy harvesting</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>CAR-LIKE VEHICLES NOT HOMOLOGATED AS CARS: MICROEV, QUADRICYCLE, E-TRIKE, NEV, GOLF CAR</td>
<td>113</td>
</tr>
<tr>
<td>10.1.</td>
<td>Many names, common factors</td>
<td>113</td>
</tr>
<tr>
<td>10.2.</td>
<td>Car-like vehicles that evade restrictions, taxes and other costs</td>
<td>115</td>
</tr>
<tr>
<td>10.3.</td>
<td>Philippines: big new commitments to e-trikes</td>
<td>117</td>
</tr>
<tr>
<td>10.4.</td>
<td>Listing of manufacturers beyond golf cars</td>
<td>118</td>
</tr>
<tr>
<td>10.5.</td>
<td>Toyota i-ROAD e-trike is a scooter/ MicroEV crossover</td>
<td>121</td>
</tr>
<tr>
<td>10.6.</td>
<td>MicroEV racing cars</td>
<td>122</td>
</tr>
<tr>
<td>10.7.</td>
<td>Golf cars</td>
<td>124</td>
</tr>
<tr>
<td>10.7.1.</td>
<td>What is included</td>
<td>124</td>
</tr>
<tr>
<td>10.7.2.</td>
<td>Market drivers</td>
<td>124</td>
</tr>
<tr>
<td>10.7.3.</td>
<td>Listing of manufacturers</td>
<td>128</td>
</tr>
<tr>
<td>10.7.4.</td>
<td>Market forecasts 2012-2023</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX 1</td>
<td>LISTINGS OF LEV BRANDS, OEMS, COMPONENT MAKERS</td>
<td>133</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td>ADDITIONAL REGULATORY SUPPORT</td>
<td>153</td>
</tr>
<tr>
<td>APPENDIX 3</td>
<td>IDTECHEX EV PUBLICATIONS AND CONSULTANCY</td>
<td>239</td>
</tr>
</tbody>
</table>
Tables

Table 1.1 LEV number, unit value in dollars ex-factory and total global market value 2012-2023 3
Table 2.1 Prices and performance of electric two wheelers – e-motorcycles and LEVs compared 10
Table 5.1 Statistics relevant to the challenge to society caused by ageing population 42
Table 5.2 Evolution of three families of powered vehicles for the disabled 45
Table 5.3 Evolution of power chairs 1980 to 2010 46
Table 5.4 Evolution of scooters for the disabled 1980 to 2010 47
Table 5.5 The continental percentage split of markets for vehicles for the disabled by value in 2010 49
Table 5.6 The percentage split of market for vehicles for the disabled by country within Europe 49
Table 5.7 The numbers in thousands of scooters plus power chairs that were and will be sold in Europe 2005 to 2015 49
Table 5.8 Features of mobility vehicles that may hold up the price by offering more in future 50
Table 5.9 The percentage distribution of manufacture between Taiwan and Mainland China by value of vehicles for the disabled 2005, 2010 and 2015 53
Table 5.10 Market for EVs for the disabled by geographical region, ex works pricing and percentage split in 2005, 2010 and 2020 53
Table 5.11 82 examples of manufacturers of EVs for the disabled by country 53
Table 5.12 Global sales of EVs used as mobility aids for the disabled by number, ex-factory unit price in thousands of dollars and total value in billions of dollars, 2012-2023, rounded 56
Table 8.1 World e-bike sales (Units) estimated for 2007-2010 81
Table 8.2 Chinese cities banning or restricting electric bikes. 91
Table 9.1 e-scooter number and ex-factory price by region for 2013 compared to the total market for LEVs. 94
Table 10.1 Listing of manufacturers beyond golf cars 118
Table 10.2 MicroEV quadricycle forecasts 2012-2023 121
Table 10.3 19 examples of golf EV manufacturers 128
Table 10.4 Global sales of electric golf cars and motorised caddies in number thousands, ex-factory unit price in thousands of dollars and total value in billions of dollars 2012-2023, rounded 129
Table 10.5 Geographical split of golf EV sales by value 2010, 2015 and 2020 129
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>LEV number in thousands 2012-2023</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>LEV unit value in dollars ex-factory 2012-2023</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>LEV total global market value in dollar billions 2012-2023</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>The 2013 Motoczysz</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Voltitude folding pedelec</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Chinese domestic ebike left and Currie IZ ViaRapido ebike right</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Electric motor scooters in China</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Electric moped by Ultra Motor</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Electric motorcycle by Vectrix</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Electric mini scooters by Currie Technologies</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>Segway personal transporter</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>Toyota Winglet personal transporter</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>3 wheel LEV with windshield and cover</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 2.11</td>
<td>The folding Yike Bike from New Zealand</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 2.12</td>
<td>Ebike by Ultra Motor A2B</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 2.13</td>
<td>LEV Shop Window with ebike.</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 2.14</td>
<td>EU small folding ebike</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 2.15</td>
<td>Chinese ebike loaded down</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 2.16</td>
<td>Chinese ebike rider</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 2.17</td>
<td>Chinese ebike with two riders</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 2.18</td>
<td>Ebikes used at Chinese factories</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 2.19</td>
<td>China LEVs at stop light</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 2.20</td>
<td>Ebike Food Delivery for Papa John’s in China</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 2.21</td>
<td>Ebike food delivery by A2B Ultra Motor</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 2.22</td>
<td>LEV four wheeler for seniors – a crossover from LEVs to mobility for the disabled</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 2.23</td>
<td>Shawn Lawless Rocket drag bike</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 2.24</td>
<td>Moveo foldable scooter Hungary</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 2.25</td>
<td>IBD Bloomfield Bikes Ebike Display in CT USA</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 2.26</td>
<td>Electric tricycle</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 2.27</td>
<td>Examples of three wheel leisure and delivery vehicles promoted at EVS26 in California May 2012</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 2.28</td>
<td>TriBred electric Trikke patrol vehicle and general purpose version</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Chinese Repair in the Street</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Chinese Ebike Tire Repair</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Escooter or Ebike?</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Traditional Chinese Ebike</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Optibike USA “The Ferrari of Electric Bikes”</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Small French Folding Ebike</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>DK City db0 Ebike</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>Percentage of dependent elderly 1970 to 2040</td>
<td>42</td>
</tr>
</tbody>
</table>
Fig. 5.2 New Pihsiang Shoprider pure electric mobility vehicle for the disabled
Fig. 5.3 The Electric Car (INEC-KARO) for the disabled from Interchina Industry Group
Fig. 5.4 Solar powered power chair vehicle for the mobility impaired
Fig. 5.5 Zhejiang R&P Industry ES 413
Fig. 5.6 Pride Jazzy – making new things possible
Fig. 6.1 Battery pack interiors
Fig. 6.2 Controller by Suzhou Bafang
Fig. 6.3 Lead Acid Battery Charger by High Power
Fig. 6.4 Solar parking lot for charging by Sanyo
Fig. 6.5 User Interface by Gepida
Fig. 6.6 User Interface by BionX
Fig. 6.7 UI 1 Photo with phone Interface
Fig. 6.8 Toshiba e-bike battery
Fig. 7.1 SVRLA battery sizes by Long
Fig. 7.2 Transparent battery box
Fig. 7.3 Innovative Chinese motor
Fig. 7.4 High speed brushless motor by Bafang
Fig. 7.5 Typical connector
Fig. 8.1 Example of China exports to the EU
Fig. 8.2 Hero Electric of India Flash Ebike 1
Fig. 8.3 Electric vehicle energy consumption per passenger kilometer with full occupation.
Fig. 9.1 Peugeot e-Vivacity
Fig. 9.2 E-scooter promotion in India
Fig. 9.3 Terra motors electric scooter with smartphone
Fig. 9.4 Suzuki experimental scooter
Fig. 9.5 Sanyo system
Fig. 9.6 Kymco two wheel pure electric scooter
Fig. 9.7 Leo scooter initially with lithium polymer battery
Fig. 9.8 Retro scooters
Fig. 9.9 The Kooper scooters
Fig. 9.10 KPV scooter
Fig. 10.1 Car-like vehicles not homologated as cars, in the context of two wheelers and Europe. Love them or hate them?
Fig. 10.2 The Daimler Smart, left, is a mainstream car subject to tax, insurance, crash tests etc. whereas the G-Whiz from India, right, is registered as a quadricycle and was the best-selling pure electric car in the UK for ten years with sales of only hundreds yearly
Fig. 10.3 Renault Twizy quadricycle which is selling over ten thousand within two years from launch. The standard model has no windows
Fig. 10.4 Chinese micro-EV cars in China. Most of them have three wheels
Fig. 10.5 E-trikes
Fig. 10.6 Toyota i-ROAD e-trike
Fig. 10.7 E-Rex microEV racing car
Fig. 10.8 Tonaro golf and general purpose vehicle from China
Fig. 10.9 Suzhou Eagle two and four seat golf cars from China
Fig. 10.10 Yongkang Fourstar golf vehicles from China
Fig. 10.11 Shadong Wuzheng golf cars from China
Fig. 10.12 Jinhua Ryder golf car from China