Contents

Page

EXECUTIVE SUMMARY AND CONCLUSIONS	1
Range extender market in 2023	1
EV Market 2013 and 2023	2
Ten year forecast for electric cars, hybrids and their range extenders	8
Hybrid and pure electric vehicles compared	9
Hybrid market drivers	9
What will be required of a range extender 2012-2023	10
Three generations of range extender	11
Why range extenders need lower power over the years	14
Energy harvesting – mostly ally not alternative	17
Key trends for range extended vehicles	17
Combining Heating and Range-Extension for Electric Vehicles	19
Emergency range extenders	19
INTRODUCTION	21
Types of electric vehicle	21
Many fuels	26
Born electric	27
Pure electric vehicles are improving	27
Series vs parallel hybrid	30
Modes of operation of hybrids	30
Plug in hybrids	30
Charge-depleting mode	31
Blended mode	31
Charge-sustaining mode	32
Mixed mode	32
Microhybrid is a misnomer	32
Deep hybridisation	33
Battery cost and performance are key	35
Hybrid price premium	37
Progressing the REEV	38
What is a range extender?	39
First generation range extender technology	39
Second generation range extender technology	39
Radically new approaches - Hüttlin range extender	40
Third generation range extender technology	41
Market position of fuel cell range extenders	42
Energy harvesting on and in electric vehicles	43
Tradeoff of energy storage technologies	45

2.16.	Trend to high voltage	46
2.17.	Component choices for energy density/ power density	47
2.18.	Fuel cells rescued by batteries	48
2.19.	PEM fuel cells	51
2.20.	Trend to distributed components	52
2.21.	Trend to flatness then smart skin	53
3.	ELECTRIC VEHICLE MARKET OVERVIEW	55
3.1.	The whole picture	55
3.1.1.	Synergies	55
3.1.2.	What is excluded?	55
3.2.	Largest sectors	56
3.3.	Numbers of manufacturers	64
3.4.	Heavy industrial sector	66
3.5.	Buses	66
3.6.	The light industrial and commercial sector	66
3.7.	Two wheel and allied vehicles	68
3.8.	Cars	70
3.9.	Golf	71
3.10.	Military	71
3.11.	Marine	72
3.12.	Other	72
3.13.	Market for EV components	73
3.14.	Timelines	73
3.15.	Watch Japan, China and Korea	74
3.16.	Vacillation by some governments	75
3.17.	Healthy shakeout of the car industry	76
3.18.	Full circle back to pure EVs	76
3.19.	Winning strategies	77
4.	MARKETS AND TECHNOLOGIES FOR REEVS	79
4.1.	Range extenders for land craft	80
4.2.	Range Extenders for electric aircraft	80
4.2.1.	Military aircraft	80
4.3.	Comparisons	81
4.4.	Fuel cells in aviation	84
4.5.	Civil aircraft	86
4.6.	Potential for electric airliners	88
4.7.	Range extenders for marine craft	89
5.	RANGE EXTENDER DEVELOPERS AND MANUFACTURERS	93

93

5.2.	AeroVironment / Protonex Technology USA	94
5.3.	Austro Engine Austria	98
5.4.	Bladon Jets UK	99
5.5.	BMW Germany	102
5.6.	Brayton Energy USA	102
5.7.	Capstone Turbine Corporation USA	102
5.8.	Clarian Laboratories USA	105
5.9.	Compound Rotary Engines UK	106
5.10.	Daimler AG inc Mercedes Benz Germany	106
5.11.	DLR German Aerospace Center Germany	108
5.11.1.	Free piston range extenders	109
5.12.	EcoMotors	119
5.13.	Ener1 USA	120
5.14.	ETV Motors Israel	121
5.15.	FEV USA	122
5.16.	Flight Design Germany	122
5.17.	Getrag Germany	123
5.18.	GSE USA	123
5.19.	Intelligent Energy UK	125
5.20.	LiquidPiston USA	126
5.21.	Lotus Engineering UK	127
5.22.	MAHLE Powertrain UK	130
5.23.	Polaris Industries Switzerland	136
5.24.	Powertrain Technologies UK	139
5.25.	Proton Power Systems plc UK/Germany	139
5.26.	Ricardo UK	140
5.27.	Urbee Canada	140
5.28.	Volkswagen Germany	141
5.29.	Warsaw University of Technology, Poland	144
6.	RANGE EXTENDER INTEGRATORS	145
6.1.	ACAL Energy UK	145
6.2.	Altria Controls USA	145
6.3.	Ashok Leyland India	146
6.4.	Audi Germany	146
6.5.	AVL Austria	147
6.6.	Azure Dynamics USA	147
6.7.	BAE Systems UK	148
6.8.	BMW Germany	149
6.9.	Boeing Dreamworks USA	149
6.10.	Chrysler USA	150
6.11.	DesignLine New Zealand	152
6.12.	EADS Germany	152

6.13.	ENFICA-FC Italy	153
6.14.	Ford USA	160
6.15.	Frazer-Nash UK	162
6.16.	General Motors including Opel	163
6.17.	Honda Japan	165
6.18.	Howaldtswerke-Deutsche Werft Germany	166
6.19.	Hyundai Korea	167
6.20.	Igor Chak Russia	169
6.21.	Jaguar Land Rover UK	170
6.22.	Lange Aviation Germany	172
6.23.	Langford Performance Engineering Ltd UK	172
6.24.	Marion HSPD USA	173
6.25.	Pipistrel Slovenia	174
6.26.	SAIC China	175
6.27.	Skyspark Italy	176
6.28.	Suzuki Japan	177
6.29.	Tata Motors India	178
6.30.	Toyota Japan	179
6.31.	Turtle Airships Spain	185
6.32.	University of Bristol UK	186
6.33.	Université de Sherbrooke Canada	186
6.34.	University of Stuttgart Germany	188
6.35.	Vision Motor Corporation USA	189
6.36.	Volvo Sweden/ China	190
6.37.	Yo-Avto Russia	193
7.	MARKET DRIVERS AND FORECASTS	195
7.1.	Market drivers and impediments	195
7.2.	Funding as a market driver	196
7.3.	EV Market 2011 and 2021	198
7.4.	Ten year forecast for electric cars, hybrids and their range extenders	199
7.5.	Three generations of range extender	200
	APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY	205
	APPENDIX 2: FUEL CELL 2000 SUMMARY OF FUEL CELL BUS TRIALS TO 2010	223

Tables

	Tables	Page
Table 1.1	Numbers of EVs, in thousands, sold globally, 2012-2023, by applicational sector	2
Table 1.2	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	4
Table 1.3	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational	
	sector, rounded	6
Table 1.4	Number of hybrid and pure electric cars (including quadricycles) sold and those that plug in	
	thousands 2012-2022	8
Table 1.5	Some primary hybrid market drivers	10
Table 1.6	Three generations of range extender with examples of construction, manufacturer and power	
	output	12
Table 3.1	Main market drivers 2013-2023	57
Table 3.2	Numbers of EVs, in thousands, sold globally, 2012-2023, by applicational sector	58
Table 3.3	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	60
Table 3.4	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational	
	sector, rounded	62
Table 3.5	Approximate number of manufacturers of electric vehicles worldwide in 2013 by application	
	with numbers for China	64
Table 3.6	Global sales of heavy industrial EVs by numbers, ex-factory unit price and total value 2012-	
	2023, rounded	66
Table 3.7	Global sales of buses, ex-factory unit price and total value 2012-2023, rounded	66
Table 3.8	Global sales of light industrial and commercial EVs excluding buses by numbers thousands,	
	ex-factory unit price in thousands of dollars and total value in billions of dollars 2012-2023,	
	rounded	67
Table 3.9	Global sales of EVs used as mobility aids for the disabled by number, ex-factory unit price in	
	thousands of dollars and total value in billions of dollars, 2012-2023, rounded	67
Table 3.10	Global sales of two wheel and allied EVs number, ex-factory unit price in thousands of dollars	
	and total value in billions of dollars 2012-2022, rounded	69
Table 3.11	Global sales of car hybrid number thousands, ex-factory unit price in thousands of dollars	
	and total value in billions of dollars 2012-2023, rounded	70
Table 3.12	Global sales of car pure electric number thousands, ex-factory unit price in thousands of	
	dollars and total value in billions of dollars 2012-2023, rounded	70
Table 3.13	Number of hybrid and pure electric cars plugged in and the total number in thousands 2011-	
	2021	70
Table 3.14	Global sales of electric golf cars and motorised caddies in number thousands, ex-factory unit	
	price in thousands of dollars and total value in billions of dollars 2012-2023, rounded	71
Table 3.15	Global sales of electric military vehicles in number thousands, ex-factory unit price in	
	thousands of dollars and total value in billions of dollars 2012-2023, rounded	71
Table 3.16	Global sales of electric marine craft in number thousands, ex-factory unit price in thousands	
	of dollars and total value in billions of dollars 2012-2023, rounded	72

Table 3.17	Global sales of other electric vehicles (including civil aircraft and robot) in number thousands,	
	ex-factory unit price in thousands of dollars and total value in billions of dollars 2012-2022,	
	rounded	72
Table 3.18	Components and subsystems fitted in new electric vehicles 2010-2020 in thousands	73
Table 3.19	Highlights 2010-2020	73
Table 5.1	Data for RQ-11A version of AeroVironment Raven	95
Table 7.1	Primary hybrid market drivers	195
Table 7.2	Probable global market for electric vehicle range extenders in 2021 by power, number and	
	market value for small, medium and large range extenders	197
Table 7.3	Forecasts of global sales of electric vehicles by numbers thousands 2011-2021	198
Table 7.4	Forecast for car, hybrid car and car range extender sales globally in thousands 2012-2023	199
Table 7.5	Three generations of range extender with examples of construction, manufacturer and power	
	output	201

Figures

Page

Fig. 1.1	Numbers of EVs, in thousands, sold globally, 2012-2023, by applicational sector	3
Fig. 1.2	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
-	applicational sector, rounded	5
Fig. 1.3	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector,	
	rounded	7
Fig. 1.4	Advantages and disadvantages of hybrid vs pure electric vehicles	9
Fig. 1.5	Indicative trend of charging and electrical storage for large hybrid vehicles over the next decade	11
Fig. 1.6	Evolution of construction of range extenders over the coming decade	12
Fig. 1.7	Examples of range extender technology in the shaft vs no shaft categories	13
Fig. 1.8	Illustrations of range extender technologies over the coming decade with "gen" in red for those	
	that have inherent ability to generate electricity	13
Fig. 1.9	Trend of size of largest (in red) and smallest (in green) fuel cell sets used in bus trials	
	worldwide over the last twenty years	14
Fig. 1.10	Evolution of lower power range extenders for large vehicles	15
Fig. 1.11	Three generations of lithium-ion battery	16
Fig. 1.12	The most powerful energy harvesting in vehicles	17
Fig. 2.1	ThunderVolt hybrid bus	21
Fig. 2.2	BAE Systems powertrain in a bus	22
Fig. 2.3	Hybrid bus powertrain	22
Fig. 2.4	Hybrid car powertrain using CNG	23
Fig. 2.5	Mitsubishi hybrid outdoor forklift replacing a conventional ICE vehicle	24
Fig. 2.6	Hybrid military vehicle that replaces a conventional ICE version	24
Fig. 2.7	Hybrid sports boat replacing a conventional ICE version	25
Fig. 2.8	CAF-E hybrid motorcycle design based on a Prius type of drivetrain	25
Fig. 2.9	Hybrid tugboat replacing a conventional ICE version to meet new pollution laws and provide	
	stronger pull from stationary	26
Fig. 2.10	Some hybrid variants	30
Fig. 2.11	Evolution of plug in vs mild hybrids	31
Fig. 2.12	Trend to deep hybridisation	33
Fig. 2.13	Evolution of hybrid structure	34
Fig. 2.14	Three generations of lithium-ion traction battery	35
Fig. 2.15	Battery price assisting price of hybrid and pure electric vehicles as a function of power stored	36
Fig. 2.16	Probable future improvement in parameters of lithium-ion batteries for pure electric and hybrid	
	EVs	36
Fig. 2.17	Cleaner hybrid bus promotion	37
Fig. 2.18	Price premium for hybrid buses	37
Fig. 2.19	Main modes of rotational energy harvesting in vehicles	44
Fig. 2.20	Main forms of photovoltaic energy harvesting on vehicles	44
Fig. 2.21	Maximum power from the most powerful forms of energy harvesting on or in vehicles	45

Fig. 2.22	Hybrid bus with range improved by a few percent using solar panels	45
Fig. 2.23	Comparison of battery technologies	46
Fig. 2.24	Possible trend in battery power storage and voltage of power distribution	47
Fig. 2.25	Comparison of energy density of power components for hybrid vehicles	48
Fig. 2.26	Trend of size of the largest (in red) and smallest (in green) fuel cell sets used in 98 bus trials	
	worldwide over the last twenty years.	49
Fig. 2.27	Evolution of traction batteries and range extenders for large hybrid electric vehicles as they	
	achieve longer all-electric range over the next decade.	50
Fig. 2.28	Three generations of lithium-ion battery with technical features that are sometimes	
	problematical	51
Fig. 2.29	The principle of the Proton Exchange Membrane fuel cells	52
Fig. 2.30	Mitsubishi view of hybrid vehicle powertrain evolution	52
Fig. 2.31	Flat lithium-ion batteries for a car and, bottom, UAVs	53
Fig. 2.32	Supercapacitors that facilitate fast charging and discharging of the traction batteries are spread	
	out on a bus roof	53
Fig. 2.33	Asola photovoltaic panel on Fisker hybrid sports car.	54
Fig. 3.1	Numbers of EVs, in thousands, sold globally, 2012-2023, by applicational sector	59
Fig. 3.2	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	61
Fig. 3.3	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector,	
	rounded	63
Fig. 3.4	Approximate number of manufacturers of electric vehicles worldwide by application in 2010	65
Fig. 3.5	Number of manufacturers of electric vehicles in China by application in 2010	65
Fig. 3.6	Energy per 100 kilometers per person for different on-road travel options.	68
Fig. 3.7	The Mission Motors Mission One 150 mph, 150 mile range electric motorcycle	69
Fig. 4.1	Northrop Grumman surveillance airship with fuel cell range extender and energy harvesting for	
	virtually unlimited range	81
Fig. 4.2	Light utility aircraft – power-systems weight comparison	82
Fig. 4.3	Light primary trainer – power-systems weight comparison	82
Fig. 4.4	Battery and jet fuel loading	83
Fig. 4.5	Pilot plus payload vs range for fuel cell light aircraft and alternatives	85
Fig. 4.6	Total weight vs flight time for PEM fuel cell planes	85
Fig. 4.7	Takeoff gross weight breakdowns. Left: Conventional reciprocating-engine-powered airplane.	
	Right: Fuel-cell-powered airplane.	86
Fig. 4.8	JAMSTEC Fuel Cell Underwater Vehicle FCUV	90
Fig. 4.9	Soliloquy superyacht with multiple energy harvesting including solar sails that fold like a	
	penknife	91
Fig. 5.1	AeroVironment Raven	94
Fig. 5.2	Raven enhancement	95
Fig. 5.3	Aqua Puma	96
Fig. 5.4	AeroVironment Helios	97
Fig. 5.5	Global Observer first flight August 2010	97
Fig. 5.6	Bladon Jets gas turbine range extender for cars and light aircraft and the Jaguar CX75	100

Fig. 5.7	Jaguar Land Rover	100
Fig. 5.8	Latest Bladon Jets design	101
Fig. 5.9	Capstone microturbine	103
Fig. 5.10	Capstone turbine in a Japanese bus	104
Fig. 5.11	Various sizes of Capstone MicroTurbines	104
Fig. 5.12	Clarian Laboratories' range extender	105
Fig. 5.13	Daimler roadmap for commercial vehicles	107
Fig. 5.14	DLR fuel cell and the electric A320 airliner nose wheel it drives when the airliner is on the	
	ground.	109
Fig. 5.15	Holstenblitz fuel cell car trial	109
Fig. 5.16	A new power generator for hybrid vehicles	111
Fig. 5.17	EcoMotors opposing piston range extender	119
Fig. 5.18	FEV extreme downsized range extender engine	122
Fig. 5.19	GSE mini diesel driving a propeller	124
Fig. 5.20	Greg Stevenson (left) and Gene Sheehan, Fueling Team GFC contender, with GSE Engines.	124
Fig. 5.21	Block diagram of the Frank/Stevenson parallel hybrid system	125
Fig. 5.22	Fuel cell taxi trials	126
Fig. 5.23	Fuel cell development	126
Fig. 5.24	The LiquidPiston engine	127
Fig. 5.25	New two cylinder range extender from Lotus Engineering	128
Fig. 5.26	Lotus hybrid powertrain and second generation range extender ICE	129
Fig. 5.27	Lotus three and two cylinder range extenders	130
Fig. 5.28	Proton EMAS	130
Fig. 5.29	MAHLE range extenders	133
Fig. 5.30	MAHLE compact range extender	134
Fig. 5.31	MAHLE range extender at EVS26 2012	135
Fig. 5.32	Polaris REX range extender left with generator, right with peripherals as well	138
Fig. 5.33	Location of technical advances in Polaris range extender	138
Fig. 5.34	Ricardo Wolverine engine for hybrid UAVs	140
Fig. 5.35	Volkswagen XL1 hybrid concept	142
Fig. 6.1	Adura powertrain with microturbine.	146
Fig. 6.2	Ashok Leyland CNG hybrid bus	146
Fig. 6.3	Azure Dynamics hybrid powertrain	147
Fig. 6.4	Bus with BAE Systems hybrid power train	149
Fig. 6.5	Boeing fuel cell aircraft	150
Fig. 6.6	DesignLine bus with Capstone turbine range extender.	152
Fig. 6.7	ENFICA FC two seater fuel cell plane	153
Fig. 6.8	Ford Lincoln hybrid car has no price premium over the conventional version	161
Fig. 6.9	Frazer-Nash EREV powertrain	162
Fig. 6.10	Namir EREV Supercar	163
Fig. 6.11	Proton Exora	163
Fig. 6.12	Chevrolet Volt powertrain	164
Fig. 6.13	Honda IMA	165

Fig. 6.14	German fuel cell powered diesel submarine	166
Fig. 6.15	Hyundai Blue hybrid car	167
Fig. 6.16	Hyundai fuel cell powered car	168
Fig. 6.17	Igot Chak hybrid motorcycle	170
Fig. 6.18	Hybrid Land Rover trial	171
Fig. 6.19	Planned Jaguar supercar	171
Fig. 6.20	The LPE REEV concept car	173
Fig. 6.21	Marion Hyper-Sub Submersible Powerboat	174
Fig. 6.22	Skyspark in flight 2009	176
Fig. 6.23	Suzuki Burgman fuel cell scooter	177
Fig. 6.24	Suzuki concept fuel cell motorcycle headed for production	177
Fig. 6.25	Tata Motors roadmap for hybrid commercial vehicles	179
Fig. 6.26	Toyota Prius hybrid car is the world's best selling electric car	179
Fig. 6.27	Toyota hybrid forklift	180
Fig. 6.28	Turtle Airship landed on water in concept drawing	185
Fig. 6.29	Glassock hybrid set up for dynamometer testing	186
Fig. 6.30	Hybrid quad bike	187
Fig. 6.31	Hydrogenius	188
Fig. 6.32	Tyrano hybrid tractor	189
Fig. 6.33	Volvo hybrid bus	190
Fig. 6.34	Volvo technical concept 1	191
Fig. 6.35	Volvo technical concept 2	192
Fig. 6.36	Volvo technical concept 3	193
Fig. 7.1	Forecast for car, hybrid car and car range extender sales globally in thousands 2012-2023	199
Fig. 7.2	Indicative trend of charging and electrical storage for large hybrid vehicles over the next	
	decade.	200
Fig. 7.3	Evolution of construction of range extenders over the coming decade	201
Fig. 7.4	Examples of range extender technology in the shaft vs no shaft categories	202
Fig. 7.5	Illustrations of range extender technologies over the coming decade with "gen" in red for those	
	that have inherent ability to generate electricity	202