	Contents	Page
1.	EXECUTIVE SUMMARY AND CONCLUSIONS	1
1.1.	The value market for electric vehicles EVs of all types	1
1.2.	Profits	3
1.3.	League table of largest EV manufacturers	4
1.4.	Market sectors and technology trends	5
1.5.	Small and Medium Enterprises SME come to the fore	8
1.6.	Numbers of manufacturers	27
1.7.	Stronger value growth, hybrids gain value share	27
1.8.	Mark ups through the value chain	29
1.9.	Electric cars – the most unpredictable market	31
1.9.1.	Pure electric cars	32
1.9.2.	Car-like vehicles not homologated as cars	32
1.9.3.	The most unpredictable market	35
1.9.4.	Market drivers	36
1.10.	Market by territory	40
1.10.1.	Global	40
1.10.2.	China	41
1.10.3.	Pure electric vehicles in Europe	43
1.10.4.	USA	45
1.11.	Lessons from three EV events in late 2013	48
2.	INTRODUCTION	53
2.1.	Definitions and scope of this report	53
2.1.1.	Organisations involved in the EV industry value chain	53
2.1.2.	Commonality	54
2.1.3.	Key components and systems	55
2.2.	Pure vs hybrid; on-road economics	55
2.3.	Hybrid electric vehicles	57
2.3.1.	Here come range extenders	58
2.3.2.	Hybrids at no price penalty	59
2.3.3.	Born electric – in-wheel electric motors	59
2.4.	Born electric – smart skin, structural components	60
2.4.1.	Smart skin	60
2.4.2.	Structural components	61
2.5.	Objectives	62
2.6.	Benefits	62
2.7.	Electric vehicles become less poisonous	63
2.7.1.	How green are electric vehicles really?	65
2.7.2.	Contrast global automotive production 2012: major polluter	68

3.	HEAVY INDUSTRIAL EVS	71
3.1.	What is included	71
3.2.	Challenges	71
3.3.	Listing of manufacturers	72
3.3.1.	Statistics for all types of industrial lift truck	72
3.3.2.	Manufacturers of heavy industrial EVs	75
3.4.	Market size	76
3.5.	Market forecasts 2013-2024	76
4.	LIGHT INDUSTRIAL, BUSES AND OTHER COMMERCIAL EVS	77
4.1.	What is included	77
4.1.1.	Sub categories	78
4.1.2.	Buses	79
4.1.3.	Vans, pick-up trucks and larger on-road trucks	79
4.2.	Market drivers	82
4.2.1.	Governments get involved	83
4.3.	Important initiatives	83
4.4.	EVs for local services	84
4.5.	Airport EVs: Ground Support Equipment GSE	84
4.6.	Small people-movers	85
4.7.	Light industrial aids	86
4.8.	Listing of manufacturers	87
4.9.	Market forecasts 2013-2024	90
5.	MOBILITY FOR THE DISABLED	93
5.1.	Compelling and enduring need	93
5.2.	The demographic time-bomb	93
5.2.1.	Ageing population, obesity and the dependent elderly	94
5.2.2.	Laws make mobility easier	95
5.3.	Types of mobility vehicle	95
5.3.1.	Growth by new market segments	96
5.3.2.	Interchina Industry Group China	98
5.4.	Market drivers	99
5.4.1.	Geographical distribution	99
5.4.2.	Needs creating new segments	100
5.4.3.	What is driving regional differences?	101
5.4.4.	Pride Mobility, USA	102
5.5.	Listing of manufacturers	102
5.6.	Market forecasts 2013-2024	105
5.6.1.	Growth by creating new markets	105

6.	TWO WHEELED EVS AND ALLIED VEHICLES	107
6.1.	What is included	107
6.1.1.	China - unprecedented growth of electric two wheelers	107
6.1.2.	Other countries	108
6.2.	Prices and performances compared	109
6.2.2.	Hybrid motorcycles	111
6.3.	Market drivers	112
6.3.1.	Bicycles and electric bicycles	112
6.3.2.	The big winners in western markets	113
6.4.	Statistics for all bicycles	115
6.5.	Listing of manufacturers	115
6.5.1.	China	117
6.6.	Market forecasts 2013-2024	119
7.	CAR-LIKE VEHICLES NOT HOMOLOGATED AS CARS: MICROEV, QUADRICYCLE,	
	E-TRIKE, NEV, GOLF CAR	121
7.1.	Many names, common factors	121
7.2.	Car-like vehicles that evade restrictions, taxes and other costs	124
7.3.	Estrima Birò MicroEV Quadricycle removable battery	126
7.4.	Philippines: big new commitments to e-trikes	128
7.5.	Listing of manufacturers beyond golf cars	130
7.6.	Golf cars	133
7.6.1.	What is included	133
7.6.2.	Market drivers	133
7.6.3.	Prices and profits	134
7.6.4.	Listing of manufacturers	135
7.6.5.	Market forecasts 2013-2024	135
8.	CARS	137
8.1.	Adoption of electric cars	137
8.2.	Rapid increase in number of manufacturers	143
8.3.	Providing charging infrastructure	147
8.3.1.	Recharging points	147
8.3.2.	Battery changing points	148
8.3.3.	Can the grid cope?	148
8.4.	Market 2013-2024	149
8.5.	National targets for plug-in (PHEV, BEV) on road vehicle sales 2010-2020	151
8.5.1.	United Kingdom	153
9.	PURE ELECTRIC CARS	155
9.1.	Déjà Vu	156
9.1.1.	Pure electric cars are a necessary part of the range?	161

9.2.	Examples of pure EV cars	161
9.2.1.	Renault-Nissan Alliance France, Japan	161
9.2.2.	China	162
9.2.3.	High performance pure EVs – Tesla USA	162
9.2.4.	Pininfarina Bolloré Bluecar France, Italy	163
9.2.5.	REVA India	164
9.2.6.	Club Car USA	165
9.2.7.	Toyota Japan	166
10.	HYBRID CARS	169
10.1.	Construction and advantages of hybrids	169
10.2.	Evolution	169
10.3.	Chevrolet Volt USA	170
10.4.	Ford hybrids USA	171
10.5.	Market drivers	171
10.5.1.	Leading indicators	171
10.6.	History of hybrids and planned models	172
11.	MILITARY	181
11.1.	Examples of military EVs	181
11.1.1.	Hummer USA / China	182
11.1.2.	Quantum Technologies USA Aggressor AMV	182
11.1.3.	US Army trucks etc – ZAP, Columbia ParCar USA	183
11.1.4.	Oshkosh Truck Corp USA	183
11.1.5.	Plug-in trucks – BAE Systems UK	185
11.1.6.	Electric robot vehicles USA	186
11.1.7.	UQM unmanned combat vehicle USA	186
11.1.8.	Balqon Corporation	186
11.2.	Electric Unmanned Aerial Vehicles (UAVs)	187
11.2.1.	Small electrical UAVs	188
11.2.2.	SUAV batteries	188
11.2.3.	The most successful electric UAV	189
11.2.4.	Micro nano air vehicles	191
11.2.5.	Large electrical UAVs	192
11.2.6.	COM-BAT robot bat USA	193
11.3.	Examples of military EVs – in the water	194
11.3.1.	US Naval Undersea Warfare Center	194
11.4.	Manufacturers of military EVs	195
11.5.	Market forecasts 2013-2024	196
12.	MARINE	199
12.1.1.	Hybrid and pure electric tugboats	199

Market segments	202
Total market	202
Underwater	202
On the water	203
Commonality with land EVs	204
Grants for land and water	204
Effect of land EV manufacturers entering marine	204
Market drivers	204
Pollution laws back electric boats – India, Europe, USA	205
Energy harvesting superyacht UK	205
Autonomous Underwater Vehicles (AUVs) – Europe, USA	207
Manufacturers by country and product	207
Selling prices	208
Market forecasts 2013-2024	209
Outboard motor market size 2013-2024	209
AIRCRAFT, MOBILE ROBOTS AND OTHER EVS	211
Definition	211
Market drivers	211
Listing of other manufacturers by country and product	212
Market size and trends	212
Aircraft – Renault, Piccard	213
Solar Impulse	214
Non-military mobile robots – USA, UK, Japan	215
The Electrolux Automower Sweden	217
Rescue robots in Germany	218
Robots on Mars	218
Leisure on land	220
Research and hobbyist	221
Electric aircraft for civil use	221
Robotic lawn mowers	221
Market forecasts 2013-2024	223
APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY	227

	Tables	Page
Table 1.1	League table of the world's largest EV manufacturers and their dollar sales of EVs in 2014, %	
	market share by gross sales value in EVs, hybrid + pure electric, league position trend,	
	sectors of activity and technology.	4
Table 1.2	Categories of electric vehicle, saturating and growth subsectors within these categories and	
	technology trends by size/ duty cycle.	12
Table 1.3	Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector	14
Table 1.4	Explanation of trends in market numbers by sector and background statistics and forecasts	
	by other analysts of future numbers by sector and country	16
Table 1.5	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by	
	applicational sector, rounded	22
Table 1.6	Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector, rounded	24
Table 1.7	Approximate number of manufacturers of electric vehicles worldwide in 2014 by application	
	with numbers for China	27
Table 1.8	Global sales of pure electric cars by country in 2012 including Chinese cars not homologated	
	as cars in the West.	28
Table 1.9	Pure electric on-road cars sold by type in 2012 K numbers excluding delivery vans and car-	
	like vehicles not homologated as cars in the West such as cars sold in China and the Renault	
	Twizy	28
Table 1.10	Pure electric cars sold in China in 2012	28
Table 1.11	Main market drivers 2013-2023	30
Table 1.12	Monthly US electric vehicle sales for January to October2013 according to trade association	
	EDTA	38
Table 1.13	The value of the electric vehicle market by territory % East Asia, Europe, North America,	
	Other 2013 and 2023 %	40
Table 1.14	NEV output in China for 2011 and 2012 including exports	42
Table 2.1	Energy, number of riders and energy per 100 kilometers per person for different on-road	
	travel options.	57
Table 2.2	Some reasons why ICE vehicles are replaced with EVs	63
Table 2.3	Global automotive production by country 2012	69
Table 3.1	27 examples of manufacturers of heavy industrial EVs by country	75
Table 3.2	Percentage split of global manufacture of heavy industrial trucks	76
Table 3.3	Global sales of heavy industrial (heavy lifting, eg forklift and heavy earthmoving/pulling) EVs	
	by numbers, ex-factory unit price and total value 2013-2024, rounded	76
Table 3.4	Sales of heavy electric vehicles by region by percentage of units	76
Table 4.1	150 manufacturers of light industrial and commercial EVs and drive trains by country and	
	examples of their products	88
Table 4.2	Global sales of buses, ex-factory unit price and total value 2013-2024, rounded	90

Table 8.4	Global sales of car pure electric number thousands, ex-factory unit price in thousands of	
	dollars and total value in billions of dollars 2013-2024, rounded	149
Table 8.5	Global sales of micro EV quadricycle number thousands, ex-factory unit price in thousands of	
	dollars and total value in billions of dollars 2013-2024, rounded	149
Table 10.1	Major market drivers for growth in hybrid sales	171
Table 10.2	Hybrid electric vehicles and associated events 1876-2013	172
Table 11.1	Data for RQ-11A version of AeroVironment Raven	190
Table 11.2	27 suppliers of military EVs	196
Table 11.3	Global sales of electric military vehicles in number thousands, ex-factory unit price in	
	thousands of dollars and total value in billions of dollars 2013-2024, rounded	196
Table 11.4	Military electric vehicle sales by region 2013 and 2023 in percentage units	197
Table 12.1	44 examples of manufacturers of EV electric water craft	207
Table 12.2	Leading manufacturers of remotely operated and autonomous underwater vehicles for sale	208
Table 12.3	Indicative prices for marine EVs in 2013	209
Table 12.4	Global sales of electric marine craft in number thousands, ex-factory unit price in thousands	
	of dollars and total value in billions of dollars 2013-2024, rounded	209
Table 12.5	Forecast for trolling electric outboard motors 2013-2024, numbers k, \$k ex-factory price,	
	\$million market value	210
Table 12.6	Forecast for medium sized electric outboard motors (500W-10kW) 2013-2024, numbers k, \$k	
	ex-factory price, \$ million market value	210
Table 12.7	Forecast for large sized electric outboard motors (10kW-150kW) 2013-2024, numbers k, \$k	
	ex-factory price, \$ million market value	210
Table 13.1	36 examples of manufacturers of mobile robots, toy, leisure, research or hobbyist EVs by	
	country and product	212
Table 13.2	Global sales of other electric vehicles (including civil aircraft and robot) in number thousands,	
	ex-factory unit price in thousands of dollars and total value in billions of dollars 2013-2024,	
	rounded	224

	Figures	Page
Fig. 1.1	Breakdown of the electric vehicle value market in 2024, land water and airborne, hybrid and	
	pure electric	3
Fig. 1.2	Basic schematic of pure EV power train	5
Fig. 1.3	Size of vehicle, broadly indicated by price and battery kWh, related to when up-front cost	
	becomes competitive with a conventional version	8
Fig. 1.4	SMEs have more opportunity	9
Fig. 1.5	FlyNano pure electric flying jet ski Finland	10
Fig. 1.6	Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector	15
Fig. 1.7	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by	
	applicational sector, rounded	23
Fig. 1.8	Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector, rounded	25
Fig. 1.9	Ex-factory value of EVs, in 2013, percentage by applicational sector	26
Fig. 1.10	Ex-factory value of EVs, in 2024, percentage by applicational sector	26
Fig. 1.11	Electric car and microEV sales in China 2011 and 2012 hybrid and pure electric	29
Fig. 1.12	The various types of car, the precise definitions, regulations and user preferences varying	
J	greatly between countries	31
Fig. 1.13	kWh per passenger for conventional or electric on-road vehicles related to type of vehicle and	
	showing cars to be uniquely inefficient	32
Fig. 1.14	The Daimler Smart, left, is a mainstream car subject to tax, insurance, crash tests etc whereas	
	the G-Whiz from India, right, is registered as a quadricycle and was the best-selling pure	
	electric car in the UK for ten years with sales of only hundreds yearly	33
Fig. 1.15	Renault Twizy quadricycle which is selling over ten thousand within two years from launch. The	
	standard model has no windows	33
Fig. 1.16	Chinese micro-EV cars in China. Most of them have three wheels	34
Fig. 1.17	Cumulative and monthly plug-in on-road vehicle sales in the USA through 2013 according to	
	trade association EDTA	38
Fig. 1.18	The tiny sales of pure electric on-road vehicle sales in Europe showing carrier goods EVs/ light	
	industrial and commercial vehicles outselling pure electric passenger EVs, according to trade	
	association AVERE	39
Fig. 1.19	Adoption of different car power trains past and present	39
Fig. 1.20	Unit sales in China 2008-2012: total autos, total passenger cars and buses and BEV and	
	HEV/PHEV	41
Fig. 1.21	Distribution of electric vehicles in circulation according to model	43
Fig. 1.22	Number of electric 4-wheelers in Europe	44
Fig. 1.23	Number of electric 2-wheelers in Europe	44
Fig. 1.24	Monthly New PHEV and AEV Sales by Model	46
Fig. 1.25	Yearly New HEV Sales by Model	46
Fig. 1.26	Electric Drive Vehicle Share of New Vehicle Sales	47

Fig. 7.3	The Daimler Smart, left, is a mainstream car subject to tax, insurance, crash tests etc whereas	
	the G-Whiz from India, right, is registered as a quadricycle and was the best-selling pure	
	electric car in the UK for ten years with sales of only hundreds yearly	124
Fig. 7.4	Renault Twizy quadricycle which is selling over ten thousand within two years from launch. The	
	standard model has no windows	125
Fig. 7.5	Chinese micro-EV cars in China. Most of them have three wheels	125
Fig. 7.6	Estrima Birò microEV and battery removal	127
Fig. 7.7	E-trikes	129
Fig. 8.1	Features of leading electric cars in 2012	139
Fig. 8.2	Projections of lithium-ion traction battery price	139
Fig. 8.3	A summary of the theoretical energy density of advanced rechargeable battery chemistries	
	compared with theoretical graphene supercapacitor	140
Fig. 8.4	Distribution of cars made in Europe	142
Fig. 8.5	Detailed breakdown of car parameters by type	142
Fig. 8.6	Geographical distribution of 120 companies making or intending to make electric cars in 2013	147
Fig. 8.7	Number (thousands) of hybrid cars, pure electric cars and MicroEV/Quadricycles 2013-2023	150
Fig. 8.8	Total market value (US\$ billion) of hybrid cars, pure electric cars and MicroEV/Quadricycles	
	2013-2023	150
Fig. 8.9	National targets for plug-in on road vehicle sales of EVI members in number of vehicles	
	purchased yearly	151
Fig. 8.10	Planned PEV vehicle stock by year 2010-2020 in national targets	152
Fig. 8.11	Government targets and sales by company of PEV [PHEV/BEV on-road vehicles]	152
Fig. 8.12	Early sales of new EVs by year superimposed showing comparative early adoption	153
Fig. 9.1	Trouvé pure EV car in 1881	157
Fig. 9.2	Red Bug pure EV in 1930	158
Fig. 9.3	Sinclair C5	158
Fig. 9.4	Aptera	159
Fig. 9.5	Gemcars	160
Fig. 9.6	Tesla Motors Roadster pure EV performance car	162
Fig. 9.7	Pininfarina Bolloré Bluecar showing solar panels on roof and hood	163
Fig. 9.8	Pininfarina Bolloré Bluecar cross section	164
Fig. 9.9	REVA pure EV car	165
Fig. 9.10	The Club Car street legal car	166
Fig. 9.11	Toyota pure EV city car	167
Fig. 10.1	Evolution of EV design for on-road and many non-road vehicles	170
Fig. 10.2	Chevrolet Volt battery, generator and drive unit positioning	171
Fig. 11.1	Oshkosh truck	184
Fig. 11.2	Balqon Mule M150	187
Fig. 11.3	SPI electrical SUAV	188
Fig. 11.4	Examples of SUAV rechargeable lithium batteries. Top: Flight Power "EVO 20" Lithium Polymer	
	battery. Bottom: Sion Power lithium sulfur	189
Fig. 11.5	AeroVironment Raven	190
Fig. 11.6	AeroVironment Agua Puma HAV completes Royal Australian Naw Sea trials in 2007	191

Fig. 11.7	AeroVironment Helios	192
ig. 11.8	Aurora Flight Sciences solar plane that takes off in parts and self-assembles at altitude	193
ig. 11.9	COM-BAT	193
ig. 11.10	Robotic Bat	194
ig. 11.11	Large autonomous robot jellyfish	195
Fig. 12.1	Hybrid tugboat	200
ig. 12.2	Engine room of the hybrid tugboat	200
ig. 12.3	Bratt electric tugboat	201
ig. 12.4	Electric deck boat by Leisure Life	203
ig. 12.5	Electric launch	203
ig. 12.6	Solar powered boats for tourism cruising at 12 kph on Lake Geneva	205
ig. 12.7	The rigid-wing superyacht concept called 'Soliloquy'	206
ig. 13.1	"Zep'lin"s	213
ig. 13.2	"Zep'lin" photovoltaic sail adjustment	214
Fig. 13.3	Solar Impulse	214
ig. 13.4	The Electrolux Automower	218
Fig. 13.5	Robots for Mars	219
Fig. 13.6	LawnBott	222