Contents

1.	EXECUTIVE SUMMARY AND CONCLUSIONS	1
1.1.	Traction motor forecasts of numbers	1
1.2.	Global value market for vehicle traction motors	6
1.3.	Definition and background	9
1.4.	Shape of motors	9
1.5.	Location of motors	9
1.6.	Unique major new survey	10
1.7.	Blunt motor talk at EV Japan	28
1.8.	Switched reluctance motors a disruptive traction motor technology?	28
1.8.1.	Bosch - Renault Zoe	34
1.9.	Three ways that traction motor makers race to escape rare earths	34
1.9.1.	Synchronous motors with no magnets – switched reluctance	34
1.9.2.	Synchronous motors with new magnets	35
1.9.3.	Asynchronous motors	36
1.9.4.	More to come	36
1.10.	In-wheel motor adoption criteria	37
1.11.	Integration of motor and other parts	37
1.12.	Industry consolidation	38
1.13.	Industry collaboration 2013	38
1.13.1.	Visedo: Axco Motors: Semikron: WIMA: Helsinki Metropolia University of Applied Sciences:	
	Power Conversion B.V	39
1.13.2.	Yasa Motors: Sevcon: Westfield Sportcars: Potenza Technology	40
1.14.	Priority for Industrial and Commercial Vehicles	40
1.15.	Lessons from eCarTec Munich October 2013	42
2.	INTRODUCTION	49
2.1.	History of electric traction motors	49
2.2.	Types of motor favoured in electric vehicles	54
2.2.1.	Types of traction motor in summary	54
2.2.2.	Asynchronous traction motors	55
2.2.3.	Size and number of motors	56
2.2.4.	Shapes of motor	57
2.2.5.	Synchronous PM traction motors	58
2.2.6.	Dealing with magnet cost	59
2.2.7.	Main choices of EV motors in future	61
2.2.8.	Axial flux vs radial flux motors	65
2.3.	Sophisticated motors bridging gaps in performance	66
2.3.1.	Advanced asynchronous motor variant – Chorus Motors	66

2.3.1. Advanced asynchronous motor variant – Chorus Motors

69
70
71
75
76
76
77
78
81
82
83
83
87
89
90
98
101
146
ces:
146
149
213
213
216
217
217
221
221
225
228
229
229
229
249
253
255

7.4.	Concern in Europe	264
	APPENDIX 1: LESSONS FROM BATTERY/EV EVENT MICHIGAN SEPTEMBER 2013	269
	APPENDIX 2: IDTECHEX PUBLICATIONS AND CONSULTANCY	279

Tables

	Tables	Page
Table 1.1	Number of traction motors in electric vehicles worldwide 2012-2023 in thousands	2
Table 1.2	Vehicle numbers (thousand) 2012-2023	3
Table 1.3	Number of traction motors in multi-motor vehicles 2012-2023 (millions) and percentage of	
	all vehicle traction motors rounded	3
Table 1.4	Proportion of electric vehicles with more than one motor 2012-2023	4
Table 1.5	Number of electric vehicles with more than one electric motor 2012-2023 in thousands and	
	percentage of all electric vehicles rounded	4
Table 1.6	Average number of motors per multi-motor vehicle 2012-2023	5
Table 1.7	Proportion of electric vehicles with one motor 2012-2023	5
Table 1.8	Number of electric vehicles with one electric motor ie number of motors in single-motor	
	vehicles in thousands	6
Table 1.9	Price of traction motor(s) to vehicle manufacturer in \$K per vehicle	6
Table 1.10	Motor market value \$ million paid by vehicle manufacturer 2012-2023	7
Table 1.11	Summary of preferences of traction motor technology for vehicles	11
Table 1.12	Advantages vs disadvantages of brushed vs brushless vehicle traction motors for today's	
	vehicles	13
Table 1.13	Most likely winners and losers in the next decade	13
Table 1.14	Supplier numbers listed by continent	14
Table 1.15	Traction motor supplier numbers listed by country in alphabetical order	15
Table 1.16	Applications targeted by our sample of motor suppliers vs market split, listed in order of	
	2012 market size	16
Table 1.17	Suppliers of vehicle traction motors – split between number offering asynchronous,	
	synchronous and both, where identified	18
Table 1.18	Suppliers offering brushed, brushless and both types of synchronous motors, where	
	identified	19
Table 1.19	Distribution of vehicle sample by applicational sector	19
Table 1.20	Vehicles with asynchronous, synchronous or both options by category in number and	
	percentage of category, listed in order of declining asynchronous percentage	20
Table 1.21	212 electric vehicle models analysed by category for $\%$ asynchronous, power and torque of	
	their electric traction motors and where intensive or rough use is most typically encountered.	
	The rated power and traction data are enhanced by figures taken from our survey of 117	
	vehicle traction motor manufacturers	21
Table 1.22	Percentage of old and abandoned models in the survey that use asynchronous or	
	synchronous motors	22
Table 1.23	Number of vehicles surveyed that have a mention of using brushed DC synchronous motors,	
	by type of vehicle	22
Table 1.24	Other motor features declared by vehicle manufacturers	24
Table 1.25	Number of cars sampled that had one, two, three or four traction electric motors	24
Table 1.26	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	26

Table 1.27	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational	
	sector, rounded	27
Table 2.1	2000 year history of electric traction motors and allied technologies	49
Table 2.2	The main choices of electric vehicle traction motor technology over the next decade	61
Table 2.3	A comparison of potential and actual electric traction motor technologies	63
Table 2.4	Comparison of outer - rotor and inner - rotor motors	65
Table 2.5	Relative merits of the motor positions in electric bicycles and e-bikes	71
Table 2.6	Extracts from some Azure Dynamics traction motor specifications	90
Table 2.7	Extracts from some ABB traction motor specifications in imperial units	90
Table 3.1	129 vehicle traction motor manufacturers by name, country, asynchronous/synchronous,	
	targeted vehicle types, claims and images	101
Table 3.2	Supplier numbers listed by continent	144
Table 3.3	Supplier numbers listed by country	144
Table 3.4	Targeted applications vs market split.	145
Table 3.5	Suppliers of vehicle traction motors – split between number offering asynchronous,	
	synchronous and both, where identified	145
Table 3.6	Suppliers offering brushed, brushless and both types of synchronous motors, where	
	identified	145
Table 3.7	Examples of train traction motor suppliers	146
Table 4.1	212 electric vehicle manufacturers, vehicle examples, asynchronous or synchronous motor	
	used, motor details where given, motor manufacturer and number of motors per vehicle.	150
Table 4.2	Market value split over the next decade between different vehicle categories	205
Table 4.3	Vehicles with asynchronous, synchronous or both options by category in number and	
	percentage of category, listed in order of declining asynchronous percentage.	206
Table 4.4	212 electric vehicle models analysed by category	207
Table 4.5	Percentage of old and abandoned models in the survey that use asynchronous or	
	synchronous motors	208
Table 4.6	Number of vehicles surveyed that have a mention of using DC synchronous motors, by type of	
	vehicle	208
Table 4.7	Other motor features declared by vehicle manufacturers.	209
Table 4.8	Number of cars sampled that had one, two, three or four traction electric motors	209
Table 4.9	Summary of preferences of traction motor technology for vehicles.	210
Table 4.10	Most mentioned motor suppliers	211
Table 6.1	Number of traction motors in electric vehicles worldwide 2012-2023 in thousands	222
Table 6.2	Vehicle numbers (thousand) 2012-2023	223
Table 6.3	Number of traction motors in multi-motor vehicles 2012-2023 and percentage of all vehicle	
	traction motors rounded	223
Table 6.4	Proportion of electric vehicles with more than one motor 2012-2023	224
Table 6.5	Number of electric vehicles with more than one electric motor 2012-2023 in thousands and	
	percentage of all electric vehicles rounded	224
Table 6.6	Average number of motors per multi-motor vehicle 2012-2023	224
Table 6.7	Proportion of electric vehicles with one motor 2012-2023	225

Table 6.8	Number of electric vehicles with one electric motor ie number of motors in single-motor	
	vehicles in thousands	225
Table 6.9	Price of traction motor(s) to vehicle manufacturer in \$K per vehicle	226
Table 6.10	Motor market value \$ million paid by vehicle manufacturer 2012-2023	226
Table 6.11	Summary of preferences of traction motor technology for vehicles	230
Table 6.12	Advantages vs disadvantages of brushed vs brushless vehicle traction motors for today's	
	vehicles	232
Table 6.13	Most likely winners and losers in the next decade	233
Table 6.14	Supplier numbers listed by continent	233
Table 6.15	Traction motor supplier numbers listed by country in alphabetical order	234
Table 6.16	Applications targeted by our sample of motor suppliers vs market split, listed in order of	
	2012 market size	236
Table 6.17	Suppliers of vehicle traction motors – split between number offering asynchronous,	
	synchronous and both, where identified	238
Table 6.18	Suppliers offering brushed, brushless and both types of synchronous motors, where	
	identified	239
Table 6.19	Distribution of vehicle sample by applicational sector	239
Table 6.20	Vehicles with asynchronous, synchronous or both options by category in number and	
	percentage of category, listed in order of declining asynchronous percentage	240
Table 6.21	212 electric vehicle models analysed by category for % asynchronous, power and torque of	
	their electric traction motors and where intensive or rough use is most typically encountered.	
	The rated power and traction data are enhanced by figures taken from our survey of 117	
	vehicle traction motor manufacturers.	241
Table 6.22	Percentage of old and abandoned models in the survey that use asynchronous or	
	synchronous motors	242
Table 6.23	Number of vehicles surveyed that have a mention of using brushed DC synchronous motors,	
	by type of vehicle	242
Table 6.24	Other motor features declared by vehicle manufacturers	244
Table 6.25	Number of cars sampled that had one, two, three or four traction electric motors	244
Table 6.26	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	246
Table 6.27	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational	
	sector, rounded	247
Table 7.1	Number of traction inverters in electric vehicles worldwide 2012-2023 in thousands	255
Table 7.2	Vehicle numbers (thousand) 2012-2023	257
Table 7.3	Number of traction motors in multi-motor vehicles 2012-2023 and percentage of all vehicle	
	traction motors rounded	257
Table 7.4	Proportion of electric vehicles with more than one motor 2012-2023	258
Table 7.5	Number of electric vehicles with more than one electric motor 2012-2023 in thousands and	
	percentage of all electric vehicles rounded	258
Table 7.6	Average number of motors per multi-motor vehicle 2012-2023	258
Table 7.7	Proportion of electric vehicles with one motor 2012-2023	259

Table 7.8	Number of electric vehicles with one electric motor ie number of motors in single-motor	
	vehicles in thousands 2012-2023	259
Table 7.9	Price of traction inverter to vehicle manufacturer in \$k per vehicle 2012-2023	260
Table 7.10	Traction inverter market value \$million paid by vehicle manufacturer 2012-2023	260

Figures

Fig. 1.1	Number of traction motors in electric vehicles worldwide 2012-2023 in thousands	2
Fig. 1.2	Motor market value \$ million paid by vehicle manufacturer 2012-2023	7
Fig. 1.3	Location of motors sold in 2022 in vehicles in which they are fitted, in millions of motors and	
	percent of all motors with all figures rounded	10
Fig. 1.4	Supplier numbers listed by continent	14
Fig. 1.5	Traction motor supplier numbers listed by country	15
Fig. 1.6	Targeted applications on top vs market value split in 2012 centre and 2022 on bottom	17
Fig. 1.7	Suppliers of vehicle traction motors – split between number offering asynchronous,	
	synchronous and both, where identified	18
Fig. 1.8	Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by	
	type of vehicle	23
Fig. 1.9	Number of cars sampled that had one, two, three or four traction electric motors	25
Fig. 1.10	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	26
Fig. 1.11	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector,	
	rounded	27
Fig. 1.12	Poster displays concerning switched reluctance traction motors	32
Fig. 1.13	Joanneum experimental snowmobile (Austria)	43
Fig. 1.14	Streetscooter car and delivery truck (Germany)	43
Fig. 1.15	Tesla Model S – crowd puller (USA)	44
Fig. 1.16	Hyundai 1X 35 Pre-production Fuel Cell car (Korea)	44
Fig. 1.17	Mercedes B Class, referred to as the Tesla Mercedes because that company, a Daimler	
	investment, assisted in its creation. (Germany)	44
Fig. 1.18	Romet car (Poland)	45
Fig. 1.19	TukTuk taxi (Netherlands)	45
Fig. 1.20	Nissan Taxi (Japan)	45
Fig. 1.21	Green Go iCaro car (China)	46
Fig. 1.22	Mercedes SLS AMG car (Germany)	46
Fig. 1.23	Oprema concept (Slovenia)	46
Fig. 2.1	Cri Cri motors	56
Fig. 2.2	Multiple electric motors on a NASA solar powered, unmanned aircraft for the upper	
	atmosphere	57
Fig. 2.3	Bicycle hub motor rotor left and stator right	65
Fig. 2.4	Axial flux in-wheel motor driving a bicycle and a propeller	66
Fig. 2.5	60/15 kW Chorus Meshcon motor	67
Fig. 2.6	Protean in-wheel motor for on-road vehicles	70
Fig. 2.7	Innovative electric bicycle motor	70
Fig. 2.8	A motorcycle with off-center motor near hub	71
Fig. 2.9	Mitsubishi in-wheel applications	72

Fig. 2.10	Construction of an in-wheel motor	73
Fig. 2.11	Mitsubishi in-wheel motor	73
Fig. 2.12	Lohner-Porsche electric vehicle of 1898	74
Fig. 2.13	Volvo ReCharge concept hybrid	75
Fig. 2.14	Fraunhofer in-wheel motor on an Artega GT	75
Fig. 2.15	Mine resistant ambush protected - All Terrain Vehicle MATV	77
Fig. 2.16	MATV structure	77
Fig. 2.17	Elaphe axial flux, permanent magnet synchronous traction motors of unusually high power-to-	
	weight and torque-to-weight ratio	80
Fig. 2.18	SIM Drive in-wheel traction	81
Fig. 2.19	EMRAX 222 Duplex Motor	82
Fig. 2.20	Traction battery pack nominal energy storage vs battery pack voltage for mild hybrids in red,	
	plug in hybrids in blue and pure electric cars in green	83
Fig. 2.21	Thruster for Deepflight personal submarine	84
Fig. 2.22	Propulsion systems of a swimmer AUV	84
Fig. 2.23	New Intermotor brushless permanent magnet marine traction motor	85
Fig. 2.24	Brothers Willisits pure electric outboard motor	86
Fig. 2.25	EMotor 75kW pure electric outboard motor with synchronous permanent magnet motor,	
	asynchronous optional. The exposed motor is shown left.	87
Fig. 2.26	CERV	88
Fig. 2.27	CERV motor integration	89
Fig. 2.28	Trolling electric outboard motors	91
Fig. 2.29	Torqeedo advanced design of small electric outboard motor	92
Fig. 2.30	Aquawatt electric outboard motor	93
Fig. 2.31	Aquawatt electric outboard motor in action	94
Fig. 2.32	The 180 hp outboard developed for Campion Marine of Canada	95
Fig. 2.33	Unit and value sales of outboard motors in the European Union, the USA and the rest of the	
	world and trade flows	97
Fig. 2.34	ReGen Nautic hybrid powertrain	98
Fig. 5.1	Barefoot motor ATV motor in place	218
Fig. 6.1	Number of traction motors in electric vehicles worldwide 2012-2023 in thousands	222
Fig. 6.2	Motor market value \$ million paid by vehicle manufacturer 2012-2023	227
Fig. 6.3	Location of motors sold in 2022 in vehicles in which they are fitted, in millions of motors and	
	percent of all motors with all figures rounded. Figures in red refer to high priced motors and	
	figures in green refer to low priced motors	229
Fig. 6.4	Supplier numbers listed by continent	234
Fig. 6.5	Traction motor supplier numbers listed by country	235
Fig. 6.6	Targeted applications on top vs market value split in 2012 centre and 2022 on bottom	237
Fig. 6.7	Suppliers of vehicle traction motors – split between number offering asynchronous,	
	synchronous and both, where identified	238
Fig. 6.8	Number of vehicles surveyed that have a mention of using brushed DC synchronous motors, by	
	type of vehicle	243
Fig. 6.9	Number of cars sampled that had one, two, three or four traction electric motors	245

Fig. 6.10	Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2012-2023, by	
	applicational sector, rounded	246
Fig. 6.11	Ex-factory value of EVs, in billions of US dollars, sold globally, 2012-2023, by applicational sector,	
	rounded	247
Fig. 7.1	Typical e-powertrain components	251
Fig. 7.2	On-going Development of Hitachi automotive inverters	253
Fig. 7.3	Toyota Prius 2010 electronic control unit showing bed of IGBT chips	255
Fig. 7.4	Number of traction inverters in electric vehicles worldwide 2012-2023 in thousands	256
Fig. 7.5	Inverter market value \$ million paid by vehicle manufacturer 2012-2023	261
Fig. 7.6	The new MAN hybrid bus from Germany showing the power inverter and the use of a	
	supercapacitor (ultracapacitor) instead of a battery, putting different demands on the power	
	electronics	263
Fig. 7.7	Example of modern vehicle inverters from Phoenix international, a John Deere Company as	
	exhibited ant eCarTec Germany October 2012. The large unit bottom left is used in the MAN	
	hybrid electric city bus which uses supercapacitors in place of a traction battery	264