contents

Introduction

OVERALL DESIGN METHODOLOGY CHAPTER 1 **Investigation of Multi-Disciplinary Optimisation** for Aircraft Preliminary Design 1 Introduction 2 Multidisciplinary Preliminary Design Capability Approach 3 **Multidisciplinary Trade-Off Studies** 6 **Enablers for Multidisciplinary Trade-Off Studies** 7 Product & Simulation Lifecycle Management (PLM/SLM) 7 System Engineering Approach 8 Multi-Layer Approach Integration Framework 8 Modelling and Simulation 8 Multidisciplinary Design Analysis & Optimization (MDA/MDO) 9 **Enablers for MDA/MDO** 10 MDO Problem Decomposition 10 Meta-Modelling 12 **Application Of MDA/MDO Strategies and Processes** 13 Artemis - A Multilevel MDO Based Design Process 13 Context 13 A Coherent Multilevel Multifidelity Process 13 Global Aircraft Process (GAP) 14 16 Bi-Disciplinary Process (BDP) Structural Optimization Loop 17 Loads Tool 18 Bi-Level Structural Optimization 19 Aerodynamic Optimization Loop 21 Coupling between GAP and BDP 22

xiii

©2019 SAE International

Digital Aircraft - Toward Aircraft Design on Computers	23
Introduction	23
Parametric Data Modelling	24
Domain Tools Integration Aerodynamics for Performance Aerodynamics for Loads Loads to Weight	25 25 26 28
<i>Multi-Disciplinary Analysis</i> Framework	<i>30</i> 32
Optimization Tools	32
Summary/Conclusions	33
Contact Information	33
Acknowledgments	34
References	34

WEIGHT ANALYSIS

CHAPTER 2	
Refined Preliminary Weight Estimation Tool	
for Airplane Wing and Tail	37
Introduction	38
Development of a New Class II and 1/2 Weight Estimation Method	40
Lifting Surfaces Weight Decomposition	40
Sizing Load Calculation	41
The Primary Weight Estimation Process	41
Software Implementation of the Proposed Method	45
Input Parameters	45
Geometry Generator	46
Load Calculator	47
Weight Calculator	47
Preliminary Validation	48
Case Studies	48
Winglet Weight	48
Bending Moment Efficiency Factor	48
Wing Lift Distribution	49
Conclusion	49
Acknowledgment	50
Definitions/Abbreviations	50
References	50

120

STRUCTURAL ANALYSIS

References

CHAPTER 3	
Static/Fatigue Structural Behaviour	
of Damaged Stiffened Composite Plates	
for UAS Applications	53
Introduction	54
Preliminary Static Analysis of Damage Effect in	
Stiffened Panel	54
Static Behavior Summary	54
Experimental Static Results	58
Fatigue Results	62
Conclusions	64
References	65
AERODYNAMIC ANALYSIS	
CHAPTER 4	
Development of Variable Camber Continuous	
Trailing Edge Flap for Performance Adaptive	
Aeroelastic Wing	67
Acrociastic Willig	07
Introduction	68
VCCTEF Concept	69
2D CFD Simulations	73
Adaptive Aeroelastic Wing Shaping Control	77
Wind Tunnel Tests	83
Cruise Configuration Test	83
High-Lift Configuration Test	90
Flutter Analysis and Suppression Control	100
Flutter Analysis	100
Adaptive Flutter Suppression Control	103
Multi-Objective Flight Control for Adaptive Wing	
Technology Conclusion	111
LONCHISION	119

THERMAL ANALYSIS

CHAPTER 5	
Heat Pipe Embedded Carbon Fibe Polymer Composite Enclosures for	
Thermal Management	123
Introduction	124
Design	124
Analysis	126
Fabrication	128
Results	130
Summary/Conclusions	133
Contact Information	134
Acknowledgments	135
Definitions/Abbreviations	135
References	135

ACOUSTIC ANALYSIS

CHAPTER 6	
Uncertainty Modeling for Aircraft Interior	
Noise—Composites Transmission Loss	
Optimization	137
Introduction	139
Test Case Description	139
Reliability Problem Statement	141
The Reliability-Based Design Optimization Model	142
Performance Measure Approach	143
Design of Experiments and Response Surfaces	144
Analysis Case Implementation	146
Results	147
Conclusion	148
References	149

ix

LIGHTENING ANALYSIS

CHAPTER 7	
More about Lightning Induced Effects on	
Systems in a Composite Aircraft	151
Introduction	152
Lightning Interaction with Metallic Aircraft	153
Lightning Interaction with Composite Aircraft	155
Lightning Induced Effects on Composite and Metallic Aircraft	156
Spectral Comparison of Emissions due to Harnesses on Board Aircraft	159
Cable Emissions on Composite Aircraft	159
Cable Emissions on Metallic Aircraft	161
Comparison of Cable Emissions on Composite Versus	
Metallic Aircraft	161
Conclusion	162
Contact Information	162
Acknowledgments	162
References	162

FIRE ANALYSIS

CHAPTER 8	
Fire Resistant Composites	163
Introduction	163
Main Section	164
Experimental	164
Resin Synthesis	168
Materials and Methods Materials Fabrication of Laminates	169 169 169
Mechanical Testing and Physical Properties Tensile Strength and Modulus Flexural Strength Interlaminar Shear Strength	170 170 170 170

Resin Content	170
Void Content	170
Burn Tests	170
Results and Discussion	170
Contribution of Polymer and Additives to Char	
Stabilization	171
Analysis of Mechanical Behavior	174
Conclusions	177
References	177

RELIABILITY ANALYSIS

	V. V	100		

Reliability Analysis of Composite Inflatable Space Structures Considering Fracture Failure

racture Fallure	1/9
Introduction	180
Method of Approach	180
Geometry	180
Loads	180
Debris	181
Failure Criteria	182
Hole Edge Crack	182
Through Crack	183
Semielliptical Surface Crack	184
Monte-Carlo Simulation	184
Results and Discussion	185
Inflatable Space Habitat	185
Material	185
Deterministic Approach	186
Probabilistic Approach	186
Conclusions	187
Acknowledgments	187
Definitions/Abbreviations	187
References	188

SUSTAINABILITY ANALYSIS

CUADTED 10					

A Conceptual Framework for Value Chain
Analysis of End of Life Aircraft Treatment
in the Context of Sustainable Developmen

the Context of Sustainable Development	189
Introduction	190
Background	191
The Sustainability Paradigm in Aviation Industry	191
Aircraft at the End of Life	192
Manufacturer's Responsibility	192
Value Creation in Sustainability Context	193
Sustainable Value Chain	195
Theoretical Basis	195
Conceptual Framework	197
Application in Aircraft Recycling	197
Step 1: Value Chain Framework & Problem Context	197
Definition of Service and Value Chain of Recycling	198
The Geographical Definition and the Length of Value Chain	199
Step 2: Sustainability Analysis & Value Creation	199
Step 3: Players, Policy and Governance	201
Players and Interaction	201
Policy Framework and Governance	201
Step 4: Performance Measurement	204
Effectiveness, Efficiency and Stability Measurement	204
Conclusion	206
Acknowledgments	206
References	206