# Design and Simulation of Four-Stroke Engines

**List of Chapters:** 



| The Last Mu | ulled Toast                           |
|-------------|---------------------------------------|
| Foreword    |                                       |
| Acknowled   | gements                               |
| Nomenclatu  | ıre                                   |
| Chapter 1   | Introduction to the                   |
| 1.0         | Four-Stroke Engine<br>About This Book |
| 1.0         | The Fundamental Method of             |
|             | Operation of a Simple Four-           |
|             | Stroke Engine                         |
| 1.2         | The Cylinder Head Geometry            |
| 1.2         | of Typical Spark-Ignition             |
|             | Engines                               |
| 1.3         | The Cylinder Head Geometry            |
|             | of Typical Compression-Ignition       |
|             | Engines                               |
| 1.4         | Connecting Rod and                    |
|             | Crankshaft Geometry                   |
| 1.5         | The Fundamental Geometry of           |
|             | the Cylinder Head                     |
| 1.6         | Definitions of Thermodynamic          |
|             | Terms Used in Engine Design,          |
|             | Simulation, and Testing               |
| 1.7         | Laboratory Testing of Engines         |
| 1.8         | Potential Power Output of             |
|             | Four-Stroke Engines                   |
| 1.9         | The Beginnings of Simulation          |
|             | of the Four-Stroke Engine             |
| 1.10        | The End of the Beginning of           |
|             | Simulation of the Four-Stroke         |
|             | Engine                                |
| Refe        | erences for Chapter 1                 |
|             |                                       |
|             | endix A1.1 Fundamental                |
|             | modynamic Theory for                  |
| the (       | Closed Cycle                          |
|             |                                       |
|             |                                       |
|             |                                       |
|             |                                       |
|             |                                       |
|             |                                       |
|             |                                       |

## Chapter 2

#### **Gas Flow through Four-Stroke Engines**

- 2.0 Introduction
- Motion of Pressure Waves in a 2.1 Pipe
- 2.2 Motion of Oppositely Moving Pressure Waves in a Pipe
- 2.3 Friction Loss and Friction Heating during Pressure Wave Propagation
- 2.4 Heat Transfer during Pressure Wave Propagation
- 2.5 Wave Reflections at **Discontinuities in Gas** Properties
- **Reflection of Pressure Waves** 2.6
- Reflection of a Pressure Wave 2.7 at a Closed End in a Pipe
- 2.8 Reflection of a Pressure Wave at an Open End in a Pipe
- 2.9 An Introduction to Reflection of Pressure Waves at a Sudden Area Change
- 2.10 **Reflection of Pressure Waves** at an Expansion in Pipe Area
- 2.11 **Reflection of Pressure Waves** at a Contraction in Pipe Area
- 2.12 Reflection of Waves at a **Restriction between Differing Pipe Areas**
- 2.13 An Introduction to Reflections of Pressure Waves at Branches in Pipes
- 2.14 The Complete Solution of **Reflections of Pressure Waves** at Pipe Branches
- 2.15 **Reflection of Pressure Waves** in Tapered Pipes
- 2.16 **Reflection of Pressure Waves** in Pipes for Outflow from a Cvlinder
- 2.17 **Reflection of Pressure Waves** in Pipes for Inflow to a Cylinder



# **Design and Simulation of Four-Stroke Engines**



- 2.18 The Simulation of Engines by the Computation of Unsteady Gas Flow
- 2.19 The Correlation of the GPB Finite System Simulation with Experiments
- 2.20 Computation Time
- 2.21 Concluding Remarks

References for Chapter 2

Appendix A2.1 The Derivation of the Particle Velocity for Unsteady Gas Flow

Appendix A2.2 Moving Shock Waves in Unsteady Gas Flow

#### Chapter 3 Discharge Coefficients of Flow within Four-Stroke Engines

- 3.0 Introduction to Discharge Coefficients
- 3.1 The Traditional Method for the Measurement of Discharge Coefficients
- 3.2 The Reduction of Measured Data to Determine a Discharge Coefficient
- 3.3 The Discharge Coefficients of Bellmouths at an Open End to a Pipe
- 3.4 The Discharge Coefficients of a Throttled End to a Pipe
- 3.5 The Discharge Coefficients of a Port in the Cylinder Wall of a Two-Stroke Engine
- 3.6 The Discharge Coefficients of Poppet Valves in a Four-Stroke Engine
- 3.7 The Discharge Coefficients of Restrictions within Engine Ducts
- 3.8 Using the Maps of Discharge Coefficients within an Engine Simulation

3.9 Conclusions Regarding Discharge Coefficients References for Chapter 3

## Chapter 4 Combustion in Four-Stroke Engines

- 4.0 Introduction
- 4.1 The Spark-Ignition Process
- 4.2 Heat Released by Combustion
- 4.3 Heat Availability and Heat Transfer During the Closed Cycle
- 4.4 Theoretical Modeling of the Closed Cycle
- 4.5 Squish Behavior in Engines

References for Chapter 4

Appendix A4.1 Exhaust Emissions

Appendix A4.2 A Simple Two-Zone Combustion Model

## Chapter 5 Computer Modeling of Four-Stroke Engines

- 5.0 Introduction
- 5.1 Structure of a Computer Model
- 5.2 Physical Geometry Required for an Engine Model
- 5.3 Mechanical Friction Losses of Four-Stroke Engines
- 5.4 The Thermodynamic and Gas Dynamic Engine Simulation
- 5.5 The Ryobi 26 cm<sup>3</sup> Hand-Held Power Tool Engine
- 5.6 The Matchless (Seeley) 496 cm<sup>3</sup> Racing Motorcycle Engine
- 5.7 The Ducati 955 cm<sup>3</sup> Racing Motorcycle Engine
- 5.8 The Nissan Infiniti 4000 cm<sup>3</sup> Car Engine for the Indy Racing League





# **Design and Simulation of Four-Stroke Engines**



- 5.9 Automobiles: A 2000 cm<sup>3</sup> Four-Cylinder Sports-Car Engine
- 5.10 Automobiles: A 2000 cm<sup>3</sup> Four-Cylinder Turbocharged Diesel Engine
- 5.11 Concluding Remarks

References for Chapter 5

## Chapter 6 Empirical Assistance for the Designer of Four-Stroke Engines

- 6.0 Introduction
- 6.1 Empiricism for the Design of the Cylinder Head
- 6.2 The Relevance of Empiricism for the Design of the Cylinder Head
- 6.3 Empiricism for the Optimization of Intake System Tuning
- 6.4 Empiricism for the Optimization of Exhaust System Tuning
- 6.5 Concluding Remarks on Empiricism for Engine Optimization

References for Chapter 6

#### Chapter 7 Reduction of Noise Emission from Four-Stroke Engines

- 7.0 Introduction
- 7.1 Noise
- 7.2 Noise Sources in a Simple Four-Stroke Engine
- 7.3 The Different Silencing Problems of Two-Stroke and Four-Stroke Engines
- 7.4 Some Fundamentals of Silencer Design
- 7.5 Acoustic Theory for Silencer Attenuation Characteristics
- 7.6 Engine Simulation to Include the Noise Characteristics
- 7.7 Concluding Remarks on Noise Reduction

References for Chapter 7

Postscript — The Second Mulled Toast

Appendix — Computer Software and Engine Simulation Model

Index

About the Author