Automotive Engineering Fundamentals

List of Chapters

Preface

Acknowledgments

Chapter 1-Introduction and Overview

- 1.1 Beginnings
- 1.2 Growth and Refinement
- 1.3 Modern Development
- 1.4 Overview

Chapter 2 — Thermodynamics of Prime Movers

- 2.1 Introduction
- 2.2 Two- and Four-Stroke Engines
- 2.3 Indicator Diagrams and Internal Combustion Engine Performance Parameters
- 2.4 Otto and Diesel Cycle Analyses
 - 2.4.1 The Ideal Air Standard Otto Cycle
 - 2.4.2 The Ideal Air Standard Diesel Cycle
 - 2.4.3 Efficiencies of Real Engines
- 2.5 Ignition and Combustion in Spark Ignition and Diesel Engines
- 2.6 Sources of Emissions
 - 2.6.1 Simple Combustion Equilibrium
 - 2.6.2 Unburned Hydrocarbons (HC) and Nitrogen Oxides (NOx) in Spark Ignition Engines
 - 2.6.3 Unburned Hydrocarbons (HC), Nitrogen Oxides (NOx), and Particulates in Compression Ignition Engines
- 2.7 Fuel and Additive Requirements
 - 2.7.1 Abnormal Combustion in Spark Ignition Engines
 - 2.7.2 Gasoline and Diesel Additives
- 2.8 Gas Exchange Processes
 - 2.8.1 Valve Flow and Volumetric Efficiency
 - 2.8.2 Valve Timing
 - 2.8.3 Valve Operating Systems
 - 2.8.4 Dynamic Behavior of Valve Gear
- 2.9 Engine Configuration
 - 2.9.1 Choosing the Number of Cylinders
 - 2.9.2 Balancing of the Primary and Secondary Forces and Moments
- 2.10 Fuel Cells 2.10.1 Solid Polymer Fuel Cells (SPFC)

2.10.2 Solid Polymer Fuel Cell (SPFC)

Efficiency

- 2.10.2.1 Activation Losses
- 2.10.2.2 Fuel Crossover and
 - Internal Currents
- 2.10.2.3 Ohmic Losses
- 2.10.2.4 Mass Transfer Losses
- 2.10.2.5 Overall Response
- 2.10.3 Sources of Hydrogen for Solid Polymer Fuel Cells (SPFC)
 - 2.10.3.1 Steam Reforming (SR)
 - 2.10.3.2 Partial Oxidation (POX) Reforming
 - 2.10.3.3 Autothermal Reforming (AR)
 - 2.10.3.4 Carbon Monoxide Clean-Up and Solid Polymer Fuel Cell (SPFC) Operation on Reformed Fuel
 - 2.10.3.5 Hydrogen Storage
- 2.10.4 Hydrogen Fuel Cell Systems
- 2.11 Concluding Remarks
- 2.12 Problems

Chapter 3-Spark Ignition Engines

- 3.1 Introduction
- 3.2 Spark Ignition and Ignition Timing
 - 3.2.1 Ignition System Overview
 - 3.2.2 The Ignition Process
 - 3.2.3 Ignition Timing Selection and Control
- 3.3 Mixture Preparation
- 3.4 Combustion System Design
 - 3.4.1 Port Injection Combustion Systems
 - 3.4.2 Direct Injection Spark Ignition (DISI) Combustion Systems
- 3.5 Emissions Control
 - 3.5.1 Development of the Three-Way Catalyst
 - 3.5.2 Durability
 - 3.5.3 Catalyst Light-Off
 - 3.5.4 Lean-Burn NOx-Reducing
 - Catalysts, "DENOx"
- 3.6 Power Boosting
 - 3.6.1 Variable Valve Timing and Induction Tuning

Automotive Engineering Fundamentals

- 3.6.2 Supercharging
- 3.7 Engine Management Systems
 - 3.7.1 Introduction
 - 3.7.2 Sensor Types
 - 3.7.2.1 Crankshaft Speed/ Position and Camshaft Position
 - 3.7.2.2 Throttle Position
 - 3.7.2.3 Air Flow Rate
 - 3.7.2.4 Inlet Manifold Absolute Pressure
 - 3.7.2.5 Air Temperature and **Coolant Temperature**
 - 3.7.2.6 Air-Fuel Ratio
 - 3.7.2.7 Knock Detector
- 3.8 Engine Management System Functions
 - 3.8.1 Ignition Timing
 - 3.8.2 Air-Fuel Ratio Control
 - 3.8.3 Exhaust Gas Recirculation (EGR) Control
 - 3.8.4 Additional Functions
 - 3.8.5 Concluding Remarks on Engine Management Systems
- 3.9 Conclusions
- Questions 3.10

Chapter 4–Diesel Engines

- 4.1 Introduction
- **Direct and Indirect Injection Combustion** 4.2 Chambers
- 4.3 **Fuel Injection Equipment**
 - 4.3.1 Pump-Line-Injector (PLI) Systems
 - 4.3.2 Electronic Unit Injectors (EUI)
 - 4.3.3 Common Rail (CR) Fuel Injection Systems
- **Diesel Engine Emissions and Their** 4.4 Control
 - 4.4.1 Diesel Engine Emissions
 - 4.4.2 Diesel Engine Emissions Control
 - 4.4.2.1 Exhaust Gas
 - Recirculation (EGR) 4.4.2.2 Particulate Traps
 - Turbocharging
- 4.5 4.5.1 Introduction
 - 4.5.2 Turbocharger Performance
 - 4.5.3 Turbocharged Engine Performance
- Diesel Engine Management Systems 4.6
- **Concluding Remarks** 4.7
- 4.8 Examples
- 4.9 Problems

Chapter 5—Ancillaries

- 5.1 Introduction
- 5.2 Lubrication System 5.2.1 Bearings

- 5.2.1.1 Anti-Friction Bearings
- 5.2.1.2 Guide Bearings
- Thrust Bearings 5.2.1.3
- 5.2.1.4 Journal Bearings
- **Engine Lubricants** 5.2.2
- 5.2.3 Lubrication of Journal Bearings
- 5.3 Vehicle Cooling Systems
- 5.3.1 Coolant
- **Drive Belts** 5.4
 - 5.4.1 Flat Belt Drives
 - 5.4.2 V-Belts
- 5.5 Air Conditioning Systems
 - 5.5.1 Overview
 - Thermodynamic Performance and 5.5.2 Operation
 - 5.5.3 Coefficient of Performance (CoP)
 - Air Conditioning System 5.5.4 Performance
- 5.6 Generators, Motors, and Alternators
 - Fundamentals 5.6.1
 - 5.6.2 **Practical Alternators**
 - 5.6.3 Practical Starter Motors
- 5.7 Conclusions

Chapter 6-Transmissions and Driveline

- Introduction 6.1
- 6.2 **Friction Clutches**
 - 6.2.1 Torque Capability of an Axial Clutch Uniform Pressure: $p = p_{a}$ 6.2.1.1 6.2.1.2 Uniform Wear
- 6.3 Gear Theory

6.4

6.5

- Straight-Tooth Spur Gears 6.3.1
- Helical Spur Gears 6.3.2
- 6.3.3 Straight-Tooth Bevel Gears
- 6.3.4 Spiral Bevel Gears
- 6.3.5 Hypoid Gears
- Manual Transmissions
- 6.4.1 Transmission Power Flows
 - 6.4.1.1 First Gear
 - 6.4.1.2 Second Gear
 - 6.4.1.3 Third Gear
 - 6.4.1.4 Fourth Gear
 - 6.4.1.5 Reverse
- 6.4.2 Synchronizer Operation
 - Automatic Transmissions
 - Fluid Couplings and Torque 6.5.1 Converters
 - 6.5.2 **Planetary Gears**
 - 6.5.3 Planetary Gear-Set Torque Converter
 - 6.5.4 Simpson Drive
 - 6.5.4.1 Power Flow in First Gear
 - 6.5.4.2 Power Flow in Second
 - Gear
 - 6.5.4.3 Power Flow in Third Gear

Automotive Engineering Fundamentals

- 6.5.4.4 Power Flow in Reverse
- 6.5.5 Hydraulic Control System
- Continuously Variable Transmissions (CVT) 6.6.1 Introduction
 - 6.6.2 Van Doorne Continuously Variable Transmission (CVT)
 - 6.6.3 Torotrak Continuously Variable Transmission (CVT)
- 6.7 Driveshafts

6.6

- 6.7.1 Hooke's Joints
- 6.7.2 Shaft Whirl
- 6.8 Differentials
- 6.9 Four-Wheel Drive (FWD) and All-Wheel Drive (AWD)
 - 6.9.1 Part-Time Four-Wheel Drive (4WD)
 - 6.9.2 On-Demand Four-Wheel Drive (4WD)
 - 6.9.3 Full-Time Four-Wheel Drive (4WD)
 - 6.9.4 All-Wheel Drive (AWD)
- 6.10 Case Study: The Chrysler 42LE Automatic Transaxle 6.10.1 Configuration
 - 6.10.2 Planetary Gear Set
 - 6.10.3 Chain Transfer Drive
 - 6.10.4 Control System
- 6.11 Problems

Chapter 7—Steering Systems and Steering Dynamics

- 7.1 Introduction
- 7.2 Steering Mechanisms
 - 7.2.1 Worm Systems
 - 7.2.2 Worm and Sector
 - 7.2.3 Worm and Roller
 - 7.2.4 Recirculating Ball
 - 7.2.5 Rack and Pinion Steering
 - 7.2.6 Power Steering
- 7.3 Steering Dynamics
 - 7.3.1 Low-Speed Turning
 - 7.3.2 High-Speed Turning
 - 7.3.3 Effects of Tractive Forces
- 7.4 Wheel Alignment
 - 7.4.1 Camber
 - 7.4.2 Steering Axis Inclination (SAI)
 - 7.4.3 Toe
 - 7.4.4 Caster
 - 7.4.5 Wheel Alignment
- 7.5 Steering Geometry Errors
- 7.6 Front-Wheel-Drive Influences
 - 7.6.1 Driveline Torque
 - 7.6.2 Loss of Cornering Stiffness Due to Tractive Forces
 - 7.6.3 Increase in Aligning Torque Due to Tractive Forces
- 7.7 Four-Wheel Steering

- 7.7.1 Low-Speed Turns
- 7.7.2 High-Speed Turns
- 7.7.3 Implementation of Four-Wheel Steering
- 7.8 Vehicle Rollover
 - 7.8.1 Quasi-Static Model
 - 7.8.2 Quasi-Static Rollover with Suspension
 - 7.8.3 Roll Model
- 7.9 Problems

Chapter 8-Suspensions

- 8.1 Introduction
- 8.2 Perception of Ride
- 8.3 Basic Vibrational Analysis
 - 8.3.1 Single-Degree-of-Freedom Model (Quarter Car Model)
 - 8.3.2 Two-Degrees-of-Freedom Model (Quarter Car Model)
 - 8.3.3 Two-Degrees-of-Freedom Model (Half Car Model)
- 8.4 Suspension System Components
 - 8.4.1 Springs
 - 8.4.1.1 Leaf Springs
 - 8.4.1.2 Torsion Bars
 - 8.4.1.3 Coil Springs
 - 8.4.1.4 Pneumatic (Air) Springs
 - 8.4.2 Dampers (Shock Absorbers
- 8.5 Suspension Types
 - 8.5.1 Solid Axle Suspensions
 - 8.5.1.1 Hotchkiss Suspensions
 - 8.5.1.2 Four-Link Suspensions
 - 8.5.1.3 de Dion Suspensions
 - 8.5.2 Independent Suspensions
 - 8.5.2.1 Short-Long Arm
 - Suspensions (SLA)
 - 8.5.2.2 MacPherson Struts
 - 8.5.2.3 Trailing Arm Suspensions
 - 8.5.2.4 Multi-Link Suspensions
 - 8.5.2.5 Swing Arm Suspensions
- 8.6 Roll Center Analysis
 - 8.6.1 Wishbone Suspension Roll Center Calculation
 - 8.6.2 MacPherson Strut Suspension Roll Center Calculation
 - 8.6.3 Hotchkiss Suspension Roll Center Calculation
 - 8.6.4 Vehicle Motion About the Roll Axis
- 8.7 Active Suspensions
- 8.8 Conclusions

Chapter 9-Brakes and Tires

- 9.1 Introduction
- 9.2 Braking Dynamics
- 9.3 Hydraulic Principles

Automotive Engineering Fundamentals

- 9.4 Brake System Components
 - 9.4.1 Master Cylinder
 - 9.4.2 Power Assistance
 - 9.4.3 Combination Valve
 - 9.4.3.1 Proportioning Valve
 - 9.4.3.2 Pressure Differential Switch
 - 9.4.3.3 Metering Valve
- 9.5 Drum Brakes
 - 9.5.1 Analysis of Drum Brakes
 - 9.5.2 Example
- 9.6 Disc Brakes
 - 9.6.1 Disc Brake Components
 - 9.6.1.1 Brake Disc
 - 9.6.1.2 Brake Pads
 - 9.6.1.3 Caliper
 - 9.6.2 Disc Brake Analysis
 - 9.6.3 Heat Dissipation from Disc Brakes
- 9.7 Antilock Brake Systems (ABS)
- 9.8 Tires
 - 9.8.1 Tire Construction
 - 9.8.2 Tire Designations
 - 9.8.3 Tire Force Generation
- 9.9 Summary
- 9.10 Problems

Chapter 10-Vehicle Aerodynamics

- 10.1 Introduction
- 10.2 Essential Aerodynamics
 - 10.2.1 Introduction, Definitions, and Sources of Drag
 - 10.2.2 Experimental Techniques
- 10.3 Automobile Aerodynamics
 - 10.3.1 The Significance of Aerodynamic Drag
 - 10.3.2 Factors Influencing Aerodynamic Drag
- 10.4 Truck and Bus Aerodynamics
 - 10.4.1 The Significance of Aerodynamic Drag
 - 10.4.2 Factors Influencing Aerodynamic Drag
- 10.5 Aerodynamics of Open Vehicles
- 10.6 Numerical Prediction of Aerodynamic Performance
- 10.7 Conclusions
- 10.8 Examples
- 10.9 Discussion Points

Chapter 11-Transmission Matching and Vehicle Performance

- 11.1 Introduction
- 11.2 Transmission Matching

- 11.2.1 Selecting the Engine Size and Final Drive Ratio for Maximum Speed
- 11.2.2 Use of Overdrive Ratios to Improve Fuel Economy
- 11.2.3 Use of Continuously Variable Transmissions (CVT) to Improve Performance
- 11.2.4 Gearbox Span
- 11.3 Computer Modeling
 - 11.3.1 Introduction
 - 11.3.2 ADVISOR (ADvanced Vehicle SimulatOR)
- 11.4 Conclusions

Chapter 12—Alternative Vehicles and Case Studies

- 12.1 Electric Vehicles
 - 12.1.1 Introduction
 - 12.1.2 Battery Types
 - 12.1.2.1 Lead-Acid Batteries
 - 12.1.2.2 Nickel-Cadmium (NiCd) Batteries
 - 12.1.2.3 Nickel-Metal Hydride (NiMH) Batteries
 - 12.1.2.4 Lithium Ion (Li-Ion)/ Lithium Polymer Batteries
 - 12.1.3 Types of Electric Vehicles
 - 12.1.4 Conclusions About Electric Vehicles
- 12.2 Hybrid Electric Vehicles
 - 12.2.1 Introduction
 - 12.2.2 Dual Hybrid Systems
- 12.3 Case Studies
 - 12.3.1 Introduction
 - 12.3.2 The Vauxhall 14-40
 - 12.3.2.1 Introduction
 - 12.3.2.2 Specifications
 - 12.3.2.3 Engine Design and
 - Performance
 - 12.3.2.4 Engine Performance
 - 12.3.2.5 Vehicle Design and
 - Performance
 - 12.3.2.6 Conclusions
 - 12.3.3 The Toyota Prius
 - 12.3.4 Modeling the Dual Configuration
- 12.4 Conclusions

Chapter 13-References

Index

About the Authors