Automotive Software Engineering
Principles, Processes, Methods, and Tools
SECOND EDITION

About the Authors
Jörg Schäuffele, Dipl.-Ing., studied Mechanical Engineering at the University of Stuttgart with a focus on control engineering. His professional career began with the firm of IKG GmbH, a spinoff of the Institute of Control Engineering at the University of Stuttgart. He later joined ETAS GmbH and supported the introduction of ETAS tools in numerous engineering and consulting projects with various customers in the automotive industry worldwide. He worked in the Systems Engineering Methods, Software Process, Tools department of the Electronics Development section at BMW Headquarters in Munich and he coordinated the various product divisions at ETAS. Since 2007 he works as Product Manager at Vector Informatik GmbH.

Thomas Zurawka, Dipl.-Ing., studied electrical engineering at the University of Stuttgart and wrote a detailed doctorate thesis on digital signal processing. He started his professional career with ZF Friedrichshafen AG before joining Advanced Development at Robert Bosch GmbH where he worked on real-time operating systems. Dr. Zurawka initially developed code generators at ETAS and subsequently headed the development of the ASCET engineering tool for software development. He has served as CEO of ETAS and has been responsible for overall development. He worked as Executive Vice President for Robert Bosch GmbH. Since 2006 he is shareholder and managing director at Systecs Informationssysteme GmbH.

About the Book
Since the early seventies, the development of the automobile has been characterized by a steady increase in the deployment of onboard electronics systems and software. This trend continues unabated and is driven by rising end-user demands and increasingly stringent environmental requirements. Today, almost every function onboard the modern vehicle is electronically controlled or monitored.

The software-based implementation of vehicle functions provides for unparalleled freedoms of concept and design. However, automobile development calls for the accommodation of contrasting prerequisites — such as higher demands on safety and reliability vs. lower cost ceilings, longer product life cycles vs. shorter development times — along with growing proliferation of model variants. Automotive Software Engineering has established its position at the center of these seemingly conflicting opposites. This book provides background basics as well as numerous suggestions, rare insights, and cases in point concerning those processes, methods, and tools that contribute to the surefooted mastery of the use of electronic systems and software in the contemporary automobile.
Contents

Foreword: The Role of Software in the Automobile xi

Preface to the Second English Edition xiii

Acknowledgments .. xv

Chapter 1: Introduction and Overview 1

1.1 The Driver-Vehicle-Environment System 2
 1.1.1 Design and Method of Operation of Vehicle Electronic
 Systems .. 3
 1.1.2 Electronic Systems of the Vehicle and the Environment 5

1.2 Overview of Vehicle Electronic Systems 6
 1.2.1 Electronic Systems of the Powertrain 9
 1.2.2 Electronic Systems of the Chassis 11
 1.2.3 Body Electronics .. 13
 1.2.4 Multimedia Systems ... 15
 1.2.5 Distributed and Networked Electronic Systems 15
 1.2.6 Summary and Outlook 16

1.3 Overview of the Logical System Architecture 17
 1.3.1 ECU and Function Networks of the Vehicle 18
 1.3.2 Logical System Architecture for Open-Loop/Closed-Loop
 Control and Monitoring Systems 18

1.4 Processes in Vehicle Development 19
 1.4.1 Overview of Vehicle Development 19
 1.4.2 Overview of the Development of Electronic Systems 20
 1.4.3 Core Process for Electronic Systems and Software
 Development ... 24
 1.4.4 Support Processes for Electronic Systems and Software
 Development ... 26
 1.4.5 Production and Service of Electronic Systems and
 Software .. 28

1.5 Methods and Tools for the Development of Software for
Electronic Systems .. 28
 1.5.1 Model-Based Development 29
 1.5.2 Integrated Quality Management 31
 1.5.3 Reducing the Development Risk 32
 1.5.4 Standardization and Automation 34
 1.5.5 Development Steps in the Vehicle 37
Chapter 2: Essential System Basics

2.1 Open-Loop and Closed-Loop Control Systems
 2.1.1 Modeling
 2.1.2 Block Diagrams

2.2 Discrete Systems
 2.2.1 Time-Discrete Systems and Signals
 2.2.2 Value-Discrete Systems and Signals
 2.2.3 Time- and Value-Discrete Systems and Signals
 2.2.4 State Machines

2.3 Embedded Systems
 2.3.1 Microcontroller Construction
 2.3.2 Memory Technologies
 2.3.3 Microcontroller Programming

2.4 Real-Time Systems
 2.4.1 Defining Tasks
 2.4.2 Defining Real-Time Requirements
 2.4.3 Task States
 2.4.4 Strategies for Processor Scheduling
 2.4.5 Organization of Real-Time Operating Systems
 2.4.6 Interaction Among Tasks

2.5 Distributed and Networked Systems
 2.5.1 Logical and Technical System Architecture
 2.5.2 Defining Logical Communication Links
 2.5.3 Defining the Technical Network Topology
 2.5.4 Defining Messages
 2.5.5 Organization of Communication and Network Management
 2.5.6 Strategies for Bus Arbitration

2.6 System Reliability, Safety, Monitoring, and Diagnostics
 2.6.1 Basic Terms
 2.6.2 System Reliability and Availability
 2.6.3 System Safety
 2.6.4 System Monitoring and Diagnostics
 2.6.5 Organization of a Monitoring System for Electronic Control Units
 2.6.6 Organization of a Diagnostic System for Electronic Control Units

2.7 Electrics/Electronics and Software Architecture

Chapter 3: Support Processes for Electronic Systems and Software Development

3.1 Basic Definitions of System Theory
3.2 Process Models and Standards
3.3 Configuration Management .. 129
 3.3.1 Product and Life Cycle 129
 3.3.2 Variants and Scalability 130
 3.3.3 Versions and Configurations 131
3.4 Project Management ... 133
 3.4.1 Project Planning .. 135
 3.4.2 Project Tracking and Risk Management 140
3.5 Subcontractor/Supplier Management 141
 3.5.1 System and Component Responsibilities 141
 3.5.2 Interfaces for Specification and Integration 142
 3.5.3 Defining the Cross-Corporation Development Process .. 142
3.6 Requirements Management 143
 3.6.1 Mining, Recording, and Interpreting User Requirements . 144
 3.6.2 Tracking User Requirements 149
3.7 Quality Assurance ... 150
 3.7.1 Integration and Testing Procedures 150
 3.7.2 Software Quality Assurance Methods 151

Chapter 4: Core Process for Electronic Systems and
Software Engineering ... 153
 4.1 Requirements and Prerequisites 155
 4.1.1 Shared System and Component Responsibilities 155
 4.1.2 Coordination of Systems Engineering and Software
 Engineering .. 155
 4.1.3 Model-Based Software Development 157
 4.2 Basic Definitions and Notations 158
 4.2.1 Processes, Process Steps, and Artifacts 158
 4.2.2 Methods and Tools 159
 4.3 Specification of Logical System Architecture 160
 4.4 Specification of Technical System Architecture 163
 4.4.1 Analysis and Specification of Open-Loop/Closed-Loop
 Control Systems 167
 4.4.2 Analysis and Specification of Real-Time Systems 168
 4.4.3 Analysis and Specification of Distributed and Networked
 Systems ... 169
 4.4.4 Analysis and Specification of Reliable and Safe Systems .. 169
 4.5 Specification of Software Architecture 170
 4.5.1 Specification of Software Components and Associated
 Interfaces .. 171
 4.5.2 Specification of Software Layers 174
 4.5.3 Specification of Operating States 174
 4.6 Specification of Software Components 177
 4.6.1 Specification of Data Model 177
4.6.2 Specification of Behavioral Model 178
4.6.3 Specification of Real-Time Model 180
4.7 Design and Implementation of Software Components 183
 4.7.1 Consideration of Requested Nonfunctional Product Properties 184
 4.7.2 Design and Implementation of Data Model 186
 4.7.3 Design and Implementation of Behavioral Model 187
 4.7.4 Design and Implementation of Real-Time Model 188
4.8 Software Component Testing 189
4.9 Integration of Software Components 189
 4.9.1 Generating Program Version and Data Version 190
 4.9.2 Generating Description Files 192
 4.9.3 Generating Documentation 192
4.10 Software Integration Testing 193
4.11 Integration of System Components 194
 4.11.1 Integration of Software and Hardware 195
 4.11.2 Integration of ECUs, Setpoint Generators, Sensors, and Actuators .. 196
4.12 System Integration Test .. 198
4.13 Calibration ... 200
4.14 System and Acceptance Test 201

Chapter 5: Methods and Tools for Development 203
 5.1 Offboard Interface Between Electronic Control Units and Tools 205
 5.2 Analysis of Logical System Architecture and Specification of Technical System Architecture 206
 5.2.1 Analysis and Specification of Open-Loop and Closed-Loop Control Systems 207
 5.2.2 Analysis and Specification of Real-Time Systems 211
 5.2.3 Analysis and Specification of Distributed and Networked Systems ... 217
 5.2.4 Analysis and Specification of Reliable and Safe Systems ... 222
 5.3 Specification and Validation of Software Functions 230
 5.3.1 Specification of Software Architecture and Software Components ... 232
 5.3.2 Specification of Data Model 237
 5.3.3 Specification of Behavioral Model Using Block Diagrams 237
 5.3.4 Specification of Behavioral Model Using Decision Tables 240
 5.3.5 Specification of Behavioral Model Using State Machines 242
 5.3.6 Specification of Behavioral Model Using High-Level Languages .. 247
 5.3.7 Specification of Real-Time Model 249
5.3.8 Validating the Specification Through Simulation and Rapid Prototyping .. 249
5.4 Design and Implementation of Software Functions 259
 5.4.1 Consideration of Requested Nonfunctional Product Properties ... 259
 5.4.2 Design and Implementation of Algorithms for Fixed-Point and Floating-Point Arithmetic268
 5.4.3 Design and Implementation of Software Architecture 286
 5.4.4 Design and Implementation of Data Model 290
 5.4.5 Design and Implementation of Behavioral Model 294
5.5 Integration and Testing of Software Functions 297
 5.5.1 Software-in-the-Loop Simulations 298
 5.5.2 Laboratory Vehicles and Test Benches 299
 5.5.3 Experimental, Prototype, and Production Vehicles 306
 5.5.4 Design and Automation of Experiments 307
5.6 Calibration of Software Functions 308
 5.6.1 Offline and Online Calibration Procedures 310
 5.6.2 Software Update Through Flash Programming 312
 5.6.3 Synchronous Measuring of Microcontroller and Instrumentation Signals 313
 5.6.4 Downloading and Evaluating Onboard Diagnostic Data 314
 5.6.5 Offline Calibration of Parameters 314
 5.6.6 Online Calibration of Parameters 315
 5.6.7 Classification of Offboard Interfaces for Online Calibration ... 316
 5.6.8 CAL-RAM Management 322
 5.6.9 Parameter and Data Version Management 325
 5.6.10 Design and Automation of Experiments 326

Chapter 6: Methods and Tools for Production and Service ... 327

 6.1 Offboard Diagnostics .. 328
 6.2 Parameterization of Software Functions 329
 6.3 Software Update Through Flash Programming 331
 6.3.1 Erasing and Programming Flash Memory 332
 6.3.2 Flash Programming Through the Offboard Diagnostic Interface ... 332
 6.3.3 Security Requirements 334
 6.3.4 Availability Requirements 336
 6.3.5 Boot Block Shifting and Flash Programming 337
 6.4 Startup and Testing of Electronic Systems 338
Contents

Chapter 7: Summary and Outlook ... 339
References .. 343
Illustration Credits ... 351
List of Acronyms ... 353
Index .. 355
About the Authors .. 371