Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 135
2014-10-02
Article
With its European base and global presence, it would only make sense that Airbus would take a leading role in the EU’s CleanSky 2, a joint technology initiative that is the follow-up to the CleanSky aerospace research program.
2014-08-05
Article
Airbus, British Airways (BA), Heathrow Airport (LHR), and NATS (the main air navigation service provider in the U.K.) have established a partnership to study and develop operational procedures to reduce the number of people affected by noise around London’s Heathrow.
2014-06-19
Article
Airbus Group and Safran are further strengthening their relationship to propose a new family of competitive, versatile, and efficient space launchers, to serve both commercial and institutional needs.
2014-05-08
Article
The first ever Airbus A350 XWB to visit the U.S., MSN2, arrived the second week in May at McKinley Climatic Lab at Eglin Air Force base in Florida. Over several weeks the aircraft and its various systems and cabin installations will be subjected to the extreme hot and cold temperatures that the facility can sustain in a testing environment.
2014-03-10
Article
Greater fuel efficiency and low emission requirements have grown into such an urgent imperative in aircraft design that it often overshadows an equally significant factor in air travel—noise. Airbus shows that it’s possible to infuse acoustic simulation into design processes from beginning to end, giving engineers the acoustic simulation intelligence they need to create quieter aircraft, according to Free Field Technologies.
2014-02-24
Article
Airbus and Commercial Aircraft Corporation of China (COMAC) signed a memorandum of understanding to develop a mutual understanding on new air traffic management concepts and operations as defined in the ICAO Global Air Navigation Plan.
2014-01-02
Article
Airbus signed a memorandum of understanding with EGTS International, a joint-venture company between Safran and Honeywell Aerospace, to further develop and evaluate an autonomous electric pushback and taxiing solution for the A320 Family.
2013-10-04
Article
Assembly of large and complex carbon-fiber-reinforced plastic (CFRP) components requires the use of liquid resin-based materials for applications such as shimming and aerodynamic sealing. These materials generally require curing times up to 12 h; heated air technology can reduce that time to 2 h.
2013-09-18
Article
Rising system complexity and shortened development cycles have led to the need for an extension of the existing, classical test methods. The Airbus High Lift Test Department is pursuing virtual testing as an additional, equivalent test means besides existing, established physical means of compliance.
2013-09-17
Technical Paper
2013-01-2124
Valérie Berger
Airbus business and Extended Enterprise require more and more involvement of design and built suppliers, tier 1 but also across the complete supply chain i.e. tier 2-n. These suppliers are not working only for Aerospace industry and may have different cultures. The pressure on cost and overall efficiency is high and everybody has to cope with obsolescence and new regulation (e.g. REACH (Registration, Evaluation and Authorization and Restriction of Chemicals)). So it became very important for Airbus to clarify the criteria under which a change can be done without Airbus review, and criteria under which a change can be done without Airworthiness authority review. This document details the Airbus recommendations and requirements to ensure full compliance with Part 21 to Airbus (and suppliers) with regards to: Change to Aircraft Type Design Change to Aircraft Type Design identification Change to Aircraft Type Design identification assessment This covers the complete scope of the detail design of the Aircraft.
2013-04-19
Article
Airbus has begun construction of the company’s A320 Family Assembly Line in Mobile, AL. The new assembly line, which is the company’s first U.S.-based production facility, will be located at the Mobile Brookley Aeroplex and will facilitate assembly of A319, A320, and A321 aircraft.
2012-07-06
Article
Airbus has announced plans to establish a manufacturing facility in the United States to assemble and deliver the family of A319, A320, and A321 aircraft. Located at the Brookley Aeroplex in Mobile, AL, it will be the company's first U.S.
2012-05-31
Article
Researchers from Brötje-Automation and Airbus come up with a “versatile” solution.
2012-03-23
Video
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks. Indeed, like in other materials (CFRP, Aluminum) this drilling process provides a lot of advantages.
2011-11-03
Article
In the automotive industry, the industrial robot is a common solution to achieve high-speed, repeatable processes. But due to its lack of accuracy and its compliant nature, use of robots has not been as successful in aircraft manufacturing. The use of force control with robots could change that.
2011-10-20
Article
Due to the conflicting trends of increasing complexity of systems and drastically reduced development times, virtual testing has become one of the solutions to achieve aircraft system certification.
2011-10-18
Technical Paper
2011-01-2763
Hans-Gerd Giesseler
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design. Furthermore, the regulations require the validation of the (aerodynamic and structural) model assumptions used in calculating the design loads levels, which makes the Flight Test Identification (FT-ID) part of the Loads certification process.
2011-10-18
Technical Paper
2011-01-2762
Oscar Gonzalez, Jérôme Bazile
During the conceptual design phase, the aircraft stability and control derivatives (aerodynamic coefficients) can be estimated by using fast computational means. Aerodynamic potential codes like the Vortex Lattice Method (VLM) or the Doublet Lattice Method (DLM) are very easy to use and are capable of estimating these coefficients accurately as well as providing remarkable insight into wing aerodynamics and components interaction. Compared to the VLM, the DLM (originally used for aeroelastic computations) allows prediction of the steady as well as unsteady stability and control derivatives. The relationships involving these coefficients and the airplane's dynamic behaviour are well known, like for example the one relating the pitch damping derivative and the damping ratio of the Short Period mode. Previous research work (see references 1 and 3 for further details) based on panel methods, has modelled analytically the rigid aircraft aerodynamic coefficients, leading to an interesting result: “A singular combination of longitudinal stability derivatives, independent of the centre of gravity location, could describe, to a great extent, the longitudinal behaviour of a rigid aircraft in flight.”
2011-10-18
Technical Paper
2011-01-2669
Geoffroy Roblot, Cédric Baumann, Patrick Guerin
With the last generation of large aircraft, the electrical needs have increased to reach a power close to 1MW. A power increase directly impacts one of the prominent criterions in aircraft design process: weight. Therefore, designers face the challenge to reduce generation while the power demand is increasing. The proposed paper details a methodology based on statistical approach to estimate the electrical consumption of an electrical network. Moreover, the modeling proposed in this paper allows taking into account peaks defined by their power and duration. Based on in-service measurements on commercial aircraft flights, this study proposes two methods to estimate electrical consumption of an electrical network. The first method is described. Based on modeling thanks to an efficient clustering, a Monte Carlo simulation is performed on all the loads to estimate the electrical power on the network with relevant results. As the generator has an overload capability during a known time, the second method proposed calls in an enhanced model in order to take into account duration aspects.
2011-10-18
Technical Paper
2011-01-2691
Michael Sielemann, Tim Giese, Bettina Oehler, Manuel Gräber
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
2011-10-18
Technical Paper
2011-01-2501
Jean-Pierre Cachelet
This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground. In cabins, silence and adaptation to passenger preferences become a must.
2011-10-18
Technical Paper
2011-01-2514
Susanne Markus, Christian Tornow, Stefan Dieckhoff, Michel Boustie, Romain Ecault, Laurent Berthe, Clemens Bockenheimer
Composite materials are increasingly being used in the manufacturing of structural components in aeronautics industry. A consequent light-weight design of CFRP primary structures requires adhesive bonding as the optimum joining technique but is limited due to a lack of adequate quality assurance procedures. The successful implementation of a reliable quality assurance concept for adhesive bonding within manufacturing and in-service environments will provide the basis for increased use of lightweight composite materials for highly integrated aircraft structures thus minimizing rivet-based assembly. The expected weight saving for the fuselage airframe is remarkable and therefore the driver for research and development of key-enabling technologies. The performance of adhesive bonds mainly depends on the physico-chemical properties of adherend surfaces. Therefore, a set of advanced non-destructive testing techniques is applied and adapted to the characterization of CFRP bonded structures as well as the state of adherend surfaces before bonding within the ENCOMB-project.
2011-10-18
Technical Paper
2011-01-2519
Mark Trafford, Sebastian Klein, Dirk Meiranke
AmSafe®, Airbus and IABG were the first in decades to undertake an ultimate forward load Full-Scale Test (FST) of a 9 g₁ Barrier Net. Barrier Nets are safety-critical products used during an emergency landing (FAR25.561/CS25.561) to protect passengers and crew. When Airbus Military required an A400M Barrier Net they identified requirements well beyond the "normal" and demanded that payloads from a rigid structure to a frangible be restrained. AmSafe uses non-liner Finite Element Analysis (FEA) technology to analyze their nets and proposed an innovative solution for a new Barrier Net to satisfy these very demanding requirements. Given these new requirements, it was decided to also carry out a Full-Scale Test (FST). This test required the expertise of IABG, a testing facility based in Germany. The rig requirements - the capability of asymmetric loading, with a rigid and frangible payload and the unusual behavior of a textile test object - made predicting the resultant load performance on the test setup and the rig design very challenging.
2011-10-18
Technical Paper
2011-01-2533
Lutz Deitert
During mechanical assembly, individual parts are joined by different types of fasteners which are commonly to be installed into tightly tolerated holes. Drilling of widely used modern materials like CFRP and titanium leads to challenges in terms of tool and process development. A significant challenge is one step drilling in assemblies made from mixed material stacks. It results in deviating hole diameters making the additional reaming operation essential.”But also drilling of thick single material stacks imposes difficulties in terms of hole tolerance, chip extraction, heat accumulation and lubrication issues, leading to the necessity of drilling in several steps to achieve the required hole quality and integrity. During orbital drilling the drive spindle rotates eccentrically in addition to tool rotation and feed movement, leading to a circular path of the cutting tool. Orbital drilling can offer advantages compared with conventional drilling and reaming. The eccentricity can be set steplessly even during the drilling process which allows to drill different hole diameters with one tool, tapered holes, change diameter within the hole or to perform a finishing cut during the tool return stroke.
2011-10-18
Technical Paper
2011-01-2629
François Trochu, Sylvain Chatel, Serge Maison - Le Poëc, Yannick Benoit, Patrick de Luca, Philippe Baisch, Dominique Roger, Patrick Guerin
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991. Nearly at the same time, a first commercial venture by a spinoff company offered the software to a limited number of users, all involved in the joint development of new resin injection technology for composites.
2011-10-18
Technical Paper
2011-01-2635
Björn Annighöfer, Erik Stallkamp, Frank Thielecke
Development for the Integrated Modular Avionics (IMA) platform is complex owing to the variety of equipment, vendors and non-uniform tools. The development should be simplified by a model-based harmonized tool environment by means of an integrated set of tools of different type, origin and purpose. Eclipse's flexible and modular architecture seems adequate as a framework for such a harmonized IMA development environment. This article evaluates how Eclipse could practically be utilized for this purpose. The IMA process and development requirements like concurrency, different process roles, and multiple tools are mapped to the Eclipse framework. In addition, open-source extensions for model-based engineering and application development are integrated in the tools chain. In order to test the performance, openness and compatibility of Eclipse and the tools from the IMA development process, six current and future tools are integrated into a prototype of a common Eclipse instance. The integration covers a common human-machine interface (HMI) and model-based data exchange.
2011-10-18
Technical Paper
2011-01-2639
Nirosh Jayaweera, Otto Jan Bakker, Tony Smith, Atanas Popov, Svetan Ratchev, Andrew Turnock, Peter Helgosson, David Tomlinson, Jon Wright, Mark Summers
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
2011-10-18
Technical Paper
2011-01-2620
Alioune Cissé, Gregor Massiot, Catherine Munier, Paul-Etienne Vidal, Francisco Carrillo, Marcelo Iturriz
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities. To make reliable sandwich packaging, high temperature solder alloys using low temperature processes are evaluated.
2011-10-18
Technical Paper
2011-01-2655
Matthew Walton, Philip Webb, Mike Poad
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process. Parts are measured prior to positioning, with datum locations on both parts and counter parts processed using a best-fit algorithm to balance misalignment.
2011-10-18
Technical Paper
2011-01-2640
Benjamin Chouvion, Atanas Popov, Svetan Ratchev, Carl Mason, Mark Summers
Gaps between structural components have been a common problem since the start of aviation. This has usually been caused by the manufacturing tolerances of the components in question not being sufficiently tight. An example where such issues arise is in the assembly of a wing skin to rib feet to form an aircraft wing-box, where it is commonly found that, whilst some rib feet are in contact with the wing skin, others are spaced from it. Yet a strong connection between the wing skin and the rib feet is important to maintain the structural strength of the wing-box. To eliminate the existing gaps, the current approach, used in many manufacturing production lines, involves filling in the gaps to the required shape by applying liquid or solid shim to the rib feet. This is a relatively long and expensive process. To overcome these current inherent difficulties in interface management, a method to eliminate the shimming requirement between component interfaces is presented. It is achieved by developing automated methods and processes that remove a known excess of material from the appropriate interfaces using sophisticated rapid metrology techniques and advanced equipments such as gantry mounted robots, NC machines, or local rapid-machining centres.
Viewing 1 to 30 of 135

Filter

  • Range:
    to:
  • Year: