Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 98
2015-04-14
Technical Paper
2015-01-1736
Justin Cartwright, Ahmet Selamet, Robert Wade, Keith Miazgowicz, Clayton Sloss
Abstract The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a 3.5 L Gasoline Turbocharged Direct Injection (GTDI) engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene-glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm at 12 different engine operating points of increasing brake power up to 220 hp. The nominal coolant inlet temperature and outlet pressure were 85 °C and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
2015-04-14
Technical Paper
2015-01-1544
Sunil Patil, Robert Lietz, Sudesh Woodiga, Hojun Ahn, Levon Larson, Ronald Gin, Michael Elmore, Alexander Simpson
Abstract One of the passive methods to reduce drag on the unshielded underbody of a passenger road vehicle is to use a vertical deflectors commonly called air dams or chin spoilers. These deflectors reduce the flow rate through the non-streamlined underbody and thus reduce the drag caused by underbody components protruding in to the high speed underbody flow. Air dams or chin spoilers have traditionally been manufactured from hard plastics which could break upon impact with a curb or any solid object on the road. To alleviate this failure mode vehicle manufacturers are resorting to using soft plastics which deflect and deform under aerodynamic loading or when hit against a solid object without breaking in most cases. This report is on predicting the deflection of soft chin spoiler under aerodynamic loads. The aerodynamic loads deflect the chin spoiler and the deflected chin spoiler changes the fluid pressure field resulting in a drag change.
2015-04-14
Technical Paper
2015-01-0422
Zhao Liu, Ping Zhu, Wei Chen, Ren-Jye Yang
Abstract Particle swarm optimization (PSO) is a relatively new stochastic optimization algorithm and has gained much attention in recent years because of its fast convergence speed and strong optimization ability. However, PSO suffers from premature convergence problem for quick losing of diversity. That is to say, if no particle discovers a new superiority position than its previous best location, PSO algorithm will fall into stagnation and output local optimum result. In order to improve the diversity of basic PSO, design of experiment technique is used to initialize the particle swarm in consideration of its space-filling property which guarantees covering the design space comprehensively. And the optimization procedure of PSO is divided into two stages, optimization stage and improving stage. In the optimization stage, the basic PSO initialized by Optimal Latin hypercube technique is conducted.
2015-04-14
Journal Article
2015-01-0443
Zhenfei Zhan, Junqi Yang, Yan Fu, Ren-Jye Yang, Saeed Barbat, Ling Zheng
Abstract Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
2015-04-14
Journal Article
2015-01-0455
Hao Pan, Zhimin Xi, Ren-Jye Yang
Abstract A copula-based approach for model bias characterization was previously proposed [18] aiming at improving prediction accuracy compared to other model characterization approaches such as regression and Gaussian Process. This paper proposes an adaptive copula-based approach for model bias identification to enhance the available methodology. The main idea is to use cluster analysis to preprocess data, then apply the copula-based approach using information from each cluster. The final prediction accumulates predictions obtained from each cluster. Two case studies will be used to demonstrate the superiority of the adaptive copula-based approach over its predecessor.
2015-04-14
Journal Article
2015-01-0453
Zhimin Xi, Hao Pan, Yan Fu, Ren-Jye Yang
Abstract To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
2015-04-14
Journal Article
2015-01-0452
Junqi Yang, Zhenfei Zhan, Chong Chen, Yajing Shu, Ling Zheng, Ren-Jye Yang, Yan Fu, Saeed Barbat
Abstract Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
2015-04-14
Technical Paper
2015-01-0553
Yu Zhang, Weiqin Tang, Dayong Li, Xuming Su, Shiyao Huang, Yandong Shi, Yinghong Peng
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
2015-04-14
Journal Article
2015-01-0556
Wenkai Li, Haitao Cui, Weidong Wen, Xuming Su, Carlos Engler-Pinto
Abstract Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
2015-04-14
Technical Paper
2015-01-0557
Katherine Avery, Jwo Pan, Carlos Engler-Pinto
Abstract High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
2015-04-14
Technical Paper
2015-01-0533
Jianghui Mao, Carlos Engler-Pinto, Xuming Su
Abstract In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency.
2015-04-14
Technical Paper
2015-01-0598
Xiaona Li, Changqing Du, Yongjun Zhou, Xin Xie, Xu Chen, Yaqian Zheng, Thomas Ankofski, Rodrigue Narainen, Cedric Xia, Thomas Stoughton, Lianxiang Yang
Abstract Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
2015-04-14
Technical Paper
2015-01-0437
Zhendan Xue, Mariapia Marchi, Sumeet Parashar, Guosong Li
Abstract Robustness/Reliability Assessment and Optimization (RRAO) is often computationally expensive because obtaining accurate Uncertainty Quantification (UQ) may require a large number of design samples. This is especially true where computationally expensive high fidelity CAE simulations are involved. Approximation methods such as the Polynomial Chaos Expansion (PCE) and other Response Surface Methods (RSM) have been used to reduce the number of time-consuming design samples needed. However, for certain types of problems require the RRAO, one of the first question to consider is which method can provide an accurate and affordable UQ for a given problem. To answer the question, this paper tests the PCE, RSM and pure sampling based approaches on each of the three selected test problems: the Ursem Waves mathematical function, an automotive muffler optimization problem, and a vehicle restraint system optimization problem.
2015-04-14
Journal Article
2015-01-0478
Kai Zheng, Ren-Jye Yang, Jie Hu
Abstract Design optimization methods are commonly used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges remained is to deal with a large number of design variables for large-scale design optimization problems effectively. In this paper, a new approach based on fuzzy rough set is proposed to address this issue. The concept of rough set theory is to deal with redundant information and seek for a reduced design variable set. The proposed method first exploits fuzzy rough set to screen out the insignificant or redundant design variables with regard to the output functions, then uses the reduced design variable set for design optimization. A vehicle body structure is used to demonstrate the effectiveness of the proposed method and compare with a traditional weighted sensitivity based main effect approach.
2015-04-14
Technical Paper
2015-01-0698
Danielle Zeng, Li Lu, Jin Zhou, Yang Li, Z. Xia, Paul Hoke, Kurt Danielson, Dustin Souza
Abstract Long fiber reinforced plastics (LFRP) have exhibited superior mechanical performance and outstanding design flexibility, bringing them with increasing popularity in the automotive structural design. Due to the injection molding process, the distribution of long fibers varies at different locations throughout the part, resulting in anisotropic and non-uniform mechanical properties of the final LFRP parts. Images from X-ray CT scan of the materials show that local volume fraction of the long fibers tends to be higher at core than at skin layer. Also fibers are bundled and tangled to form clusters. Most of the current micromechanical material models used for LFRP are extended from those for short fibers without adequate validation. The effect of the complexity of long fibers on the material properties is not appropriately considered.
2015-04-14
Technical Paper
2015-01-1484
Daniel E. Toomey, Eric S. Winkel, Ram Krishnaswami
Abstract Since their inception, the design of airbag sensing systems has continued to evolve. The evolution of air bag sensing system design has been rapid. Electromechanical sensors used in earlier front air bag applications have been replaced by multi-point electronic sensors used to discriminate collision mechanics for potential air bag deployment in front, side and rollover accidents. In addition to multipoint electronic sensors, advanced air bag systems incorporate a variety of state sensors such as seat belt use status, seat track location, and occupant size classification that are taken into consideration by air bag system algorithms and occupant protection deployment strategies. Electronic sensing systems have allowed for the advent of event data recorders (EDRs), which over the past decade, have provided increasingly more information related to air bag deployment events in the field.
2015-04-14
Technical Paper
2015-01-0336
Amey Karnik, Daniel Pachner, Adrian M. Fuxman, David Germann, Mrdjan Jankovic, Christopher House
Abstract Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
2015-04-14
Journal Article
2015-01-0479
Hongyi Xu, Ching-Hung Chuang, Ren-Jye Yang
Abstract One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
2015-04-14
Technical Paper
2015-01-0831
Wonah Park, Youngchul Ra, Eric Kurtz, Werner Willems, Rolf D. Reitz
Abstract The low temperature combustion concept is very attractive for reducing NOx and soot emissions in diesel engines. However, it has potential limitations due to higher combustion noise, CO and HC emissions. A multiple injection strategy is an effective way to reduce unburned emissions and noise in LTC. In this paper, the effect of multiple injection strategies was investigated to reduce combustion noise and unburned emissions in LTC conditions. A hybrid surrogate fuel model was developed and validated, and was used to improve LTC predictions. Triple injection strategies were considered to find the role of each pulse and then optimized. The split ratio of the 1st and 2nd pulses fuel was found to determine the ignition delay. Increasing mass of the 1st pulse reduced unburned emissions and an increase of the 3rd pulse fuel amount reduced noise. It is concluded that the pulse distribution can be used as a control factor for emissions and noise.
2015-04-14
Technical Paper
2015-01-0933
Jaclyn Johnson, Jeffrey Naber, Meng Tang, Zachary Taylor, Kyle Yeakle, Eric Kurtz, Nan Robarge
Abstract Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens.
2014-12-23
Article
The potential impact to public health from GDI engine particulates is driving new developments in fuel delivery, controls, and combustion strategies.
2013-04-08
Technical Paper
2013-01-0202
Yi L. Murphey, Dev Kochhar, Fang Chen, Yinghao Huang, Yong Wang
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
2013-04-08
Technical Paper
2013-01-0918
Liangjun Hu, Harold Sun, Jianwen Yi, Eric W. Curtis, Anthony Morelli, Jizhong Zhang, Ben Zhao, Ce Yang, Xin Shi, Shangtao Liu
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
2013-04-08
Technical Paper
2013-01-1092
Anand Krishnasamy, Rolf D. Reitz, Werner Willems, Eric Kurtz
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
2013-04-08
Technical Paper
2013-01-1530
Ienkaran Arasaratnam, Ryan Ahmed, Mohammed El-Sayed, Jimi Tjong, Saeid Habibi
Hybrid, plug-in hybrid, and electric vehicles have enthusiastically embraced rechargeable Li-ion batteries as their primary/supplemental power source of choice. Because the state of charge (SoC) of a battery indicates available remaining energy, the battery management system of these vehicles must estimate the SoC accurately. To estimate the SoC of Li-ion batteries, we derive a normalized state-space model based on Li-ion electrochemistry and apply a Bayesian algorithm. The Bayesian algorithm is obtained by modifying Potter's squareroot filter and named the Potter SoC tracker (PST) in this paper. We test the PST in challenging test cases including high-rate charge/discharge cycles with outlier cell voltage measurements. The simulation results reveal that the PST can estimate the SoC with accuracy above 95% without experiencing divergence.
2013-04-08
Technical Paper
2013-01-0644
Kyoo Sil Choi, Dongsheng Li, Xin Sun, Mei Li, John Allison
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
2013-04-08
Technical Paper
2013-01-0904
Xiaoye Han, Jimi Tjong, Meiping Wang, Graham Reader, Ming Zheng
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
2013-04-08
Journal Article
2013-01-1387
Zhimin Xi, Yan Fu, Ren-Jye Yang
Model validation is a process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. In reliability based design, the intended use of the model is to identify an optimal design with the minimum cost function while satisfying all reliability constraints. It is pivotal that computational models should be validated before conducting the reliability based design. This paper presents an ensemble approach for model bias prediction in order to correct predictions of computational models. The basic idea is to first characterize the model bias of computational models, then correct the model prediction by adding the characterized model bias. The ensemble approach is composed of two prediction mechanisms: 1) response surface of model bias, and 2) Copula modeling of a series of relationships between design variables and the model bias, between model prediction and the model bias.
2013-04-08
Journal Article
2013-01-1557
Jonathan Bushkuhl, William Silvis, Joseph Szente, Matti Maricq
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
2013-04-08
Journal Article
2013-01-1466
Kerem Bayar, Ryan McGee, Hai Yu, Dale Crombez
This study presents the utilization of the hardware-in-the-loop (HIL) approach for regenerative braking (regen) control enhancement efforts for the power split hybrid vehicle architecture. The HIL stand used in this study includes a production brake control module along with the hydraulic brake system, constituted of an accelerator/brake pedal assembly, electric vacuum booster and pump, brake hydraulic circuit and four brake calipers. This work presents the validation of this HIL simulator with real vehicle data, during mild and heavy braking. Then by using the HIL approach, regen control is enhanced, specifically for two cases. The first case is the jerk in deceleration caused by the brake booster delay, during transitions from regen to friction braking. As an example, the case where the regen is ramped out at a low speed threshold, and the hydraulic braking ramped in, can be considered.
Viewing 1 to 30 of 98

Filter

  • Range:
    to:
  • Year: