Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 1531
2017-04-11
Journal Article
2017-01-9175
Yitao Zhu, Makarand Datar, Kalyan Addepalli, Natalie Remisoski
Nowadays, the vehicle design is highly ruled by the increasing customer demands and expectations. In addition to ride comfort and vehicle handling, the Noise, Vibration and Harshness (NVH) behavior of the powertrain is also a critical factor that has a big impact on the customer experience. To evaluate the powertrain NVH characteristics, the NVH error states should be studied. A typical NVH event could be decoupled into 3 parts: source, path, and receiver. Take-off shudder, which evaluates the NVH severity level during vehicle take-off, is one of the most important NVH error states. The main sources of Front Wheel Drive (FWD) take-off shudder are the plunging Constant Velocity Joints (CVJ) on the left and right half shafts. This is because a plunging CVJ generates a third order plunging force with half shaft Revolution Per Minute (RPM), which is along the slip of the plunging CVJ.
2017-03-28
Technical Paper
2017-01-0629
John Kuo, George Garfinkel
Detailed thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) analysis techniques usually involves large models to accurately resolve small cooling channel details. For large battery packs, some of these meshes may exceed current computational capabilities or result in long and expensive computational efforts. Moreover, only steady-state thermal predictions are usually performed, as drive-cycle transient simulations become impractical due to the exceedingly long solving times. To tackle this problem, an innovative segregated method has been developed for thermal analysis of liquid-cooled traction batteries, where battery cells and their active cooling system are divided into three parts: the cell, the cold plate and the interface between them.
2017-03-28
Technical Paper
2017-01-0027
Li Xu, Eric Tseng, Thomas Pilutti, Steven Schondorf
Reversing a vehicle while towing a trailer can be challenging for many drivers, particularly for those who only tow on an occasionally basis. Systems used to assist a driver with backing a trailer typically estimate the heading angle of the trailer relative to that of the vehicle, i.e., the hitch angle. In the current Ford Trailer Backup Assist (TBA) system, the hitch angle is determined utilizing the existing reverse camera with added software in the image processing module. One potential issue for the vision-based hitch angle estimation approach is that environment factors may limit the system usage, since either the camera lenses or the target may be blocked or partially blocked. Furthermore, it is very difficult to apply the vision-based approach to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA.
2017-03-28
Technical Paper
2017-01-0305
Liang Huang, Charles Yuan
This paper focus on the design approach of mapping the equivalent bead to the physical bead geometry. In principle, the physical character and geometry of equivalent bead is represented as restraining force (N/mm) and a line (bead center line). During draw development, the iterations are performed to conclude the combination of restraining force that obtains the desired strain state of a given panel. The objective of physical bead design to determine a bead geometry that has the capacity to generate the same force as specified in 2D plane strain condition. The software package ABAQUS/CAE/iSight is utilized as primary tool. In the approach, the bead geometry is sketched and parameterized in ABAQUS/CAE and optimized with iSight to finalize the bead geometry. This paper also discuss the special consideration of lock bead design.
2017-03-28
Technical Paper
2017-01-1668
Amin Emrani, Steve Spadoni
In this paper, Smart Step-Down Convertor is introduced as a power supply to power a device which operates at a voltage below the power net voltage while protecting the power net and the device against faults as well. In the proposed architecture, each Smart Step-Down Converter is connected to the battery or the power source with the nominal voltage (e.g. 48V) and it provides a programmable output voltage that can be set to the rated voltage of the electric load coupled to it. The rated voltage of electric loads can be equal or lower than the nominal voltage. The proposed system with Smart Step-Down Converters has several advantages compared to other multi-voltage system architectures. First, the 12V battery and 12V power distribution box are eliminated, resulting in not only material savings but also solving some packaging challenges.
2017-03-28
Technical Paper
2017-01-1274
Jason M. Luk, Hyung Chul Kim, Robert De Kleine, Timothy J. Wallington, Heather L. MacLean
This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
2017-03-28
Technical Paper
2017-01-0040
Michael Hafner, Thomas Pilutti
We propose a steering controller for automated trailer backup, which can be used on tractor-trailer configurations including fifth wheel campers and gooseneck style trailers. The controller steers the trailer based on real-time driver issued trailer curvature commands. We give a stability proof for the hierarchical control system, and demonstrate robustness under a specific set of modeling errors. Simulation results are provided along with experimental data from a test vehicle and 5th wheel trailer.
2017-03-28
Technical Paper
2017-01-1706
Sandeep Bhattacharya, Daniel Green, Raj Sohmshetty, Ahmet Alpas
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
2017-03-28
Technical Paper
2017-01-0666
Zhenbiao Zhou, Yi Yang, Michael Brear, Joshua Lacey, Thomas G. Leone, James E. Anderson, Michael H. Shelby
Autoignition in modern spark ignition (SI) engines occurs at different conditions to those in the standardized Research (RON) and Motor (MON) Octane Number tests. The Octane Index (OI) has been proposed to account for these differences, with OI=RON–K(RON-MON) related to the occurrence of knock in the modern engine by several methods. The so-called K value then quantifies the deviation of the modern engine operation from the standard RON and MON tests. This paper presents a comparison of different methods for calculating the K value for the same modern engine operating with direct injection (DI), port fuel injection (PFI) and homogeneous, upstream fuel injection (UFI). The test fuels used span a wide range of RONs and fuel sensitivities (S=RON-MON). The quality of the results obtained using some of these methods were particularly dependent on the design of the test fuel matrix, with unreliable K values resulting in some cases.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Future vehicle North American emissions standards (e.g., North American SULEV 30) require the exhaust catalyst to be >80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst lightoff since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which assures compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-1052
Paul Zeng, Vincent Solferino, Mark Stickler
Engine ticking noise is one of the key failure modes in today’s direct injection (DI) engines. High ticking noise results in high Things Gone Wrong (TGW) index, which negatively affects customer satisfaction. In this paper, the root cause of the ticking noise from DI injector in direct mounting will be presented. Design principle such as injector impact force to cylinder head and DI injector isolator design with 2 stage stiffness is proposed.
2017-03-28
Technical Paper
2017-01-1248
Ming Su, Chingchi Chen, Krishna Prasad Bhat, Jun Kikuchi, Shrivatsal Sharma, Thomas Lei
Due to global trends and government regulations for CO2 emission reduction, the automotive industry is actively working toward vehicle electrification to improve fuel efficiency and minimize tail-pipe pollutions. For the traction inverter systems in today’s hybrid electric vehicles (HEV), silicon IGBTs and power diodes are the main control devices. These mature components are reliable and cost-effective, but have their limitation on energy losses. SiC wide bandgap semiconductor, on the other hand, has potential to offer additional boost of efficiency for the HEV drive system. In recent years, commercial SiC MOSFETs are significantly improved in terms of conduction and switching losses. However, reliability concerns and high prices still place a limit on their overall competitiveness against silicon. Ford Motor Company has partnered with major semiconductor manufacturers to evaluate SiC products for the HEV inverter system.
2017-03-28
Technical Paper
2017-01-1603
Ashish Naidu, Peter Brittle, Xiaoyu Ma, Brian Rutter
Automotive product engineering is highly complex. Understanding the implications and opportunities of introducing new technology needs to be identified as early as possible in the vehicle design process. This will deliver right first time designs, maximize integration opportunities resulting in efficient and effective competitive holistic design solutions Integrating new technology into existing vehicle architectures with a lateral thinking framework encourages innovative mind-set, this opens the opportunity to identify greater overall product deliverables, new architectural constructs and the development of intellectual property (IP). A structured approach to cascade functions, requirements, constraints (legal and legislative) and target values is required, these attributes form the basis of an engineering problem for engineers to solve.
2017-03-28
Technical Paper
2017-01-0375
Ligong Pan, Seung Hyun Jung, Sushanth Ramavath, Mohamed El-Essawi, Randall Frank, Jiawei Qin, Ramarajan Ilankamban, Yuan Yao, Homa Torab, Yuzhao Song, Jim Alanoly
Computer Aided Engineering (CAE) has become an integral and essential part of vehicle development process with stringent safety and CAFE (Corporate Average Fuel Economy), performance and reliability requirements as well as reduced vehicle development time. Exponential increasing in CPU speed with advancement in the software technology like parallel computing, CAE process time has come down substantially over the years. However the pre-processing, in particular CAE model preparation has not advanced correspondingly and remains a bottleneck. Most of the time in model preparation is spent on meshing. Any reduction in mesh preparation would have substantial cycle time reduction in the CAE process. While Durability, NVH, and Crashworthiness are governed by same structural engineering principles, prevalent practice is to use different models for each attribute. Since all start with the same CAD data using common mesh for all these three attributes would reduce the resource requirements.
2017-03-28
Technical Paper
2017-01-0231
Shih-Po Lin, Yijung Chen, Danielle Zeng, Xuming Su
In the conventional approach, the material properties of laminate composites for crash simulations are typically obtained from standard coupon tests, where the test results only provide single layer material properties. However, the lay-up effects for the failure behaviors of the real structure were not considered in numerical simulations. Hence, there was discrepancy between the crash simulations and experimental tests. Consequently, an intermediate stage is required for accurate predictions. Some component tests are required to calibrate the material models in the intermediate stage. In this paper, a laminate cylinder tube under high-impact velocity in the direction of tube axis is chosen as an example for the crash analysis. The tube consists of 24 layers of uni-directional (UD) carbon fiber composite materials, in which 4 layers are perpendicular to, while the other layers are parallel to the impact direction.
2017-03-28
Technical Paper
2017-01-0623
Zun Wang, Yi Zhang, Christophe lenormand, Mohammed Ansari, Manuel Henner
Radiator thermal cycle test is a test method to check out the robustness of a radiator. During the test, the radiator is going through transient cycles that includes high and low temperature spikes. These spikes could lead to component failure and transient temperature map is the key to predict high thermal strain and failure locations. In this investigation, an accurate and efficient way of building a numerical model to simulate the transient thermal performance of the radiator is introduced. A good correlation with physical test result is observed on temperature values at various locations.
2017-03-28
Technical Paper
2017-01-1524
Robert Lietz, Levon Larson, Peter Bachant, John Goldstein, Rafael Silveira, Mehrdad Shademan, Pete Ireland, Kyle Mooney
The number of computational fluid dynamics simulations performed during the vehicle aerodynamic development process continues to expand at a rapid rate. One key contributor to this trend is the number of analytically based designed experiments performed to support vehicle aerodynamic shape development. A second contributor is the number of aerodynamic optimization studies performed for vehicle exterior components such as mirrors, underbody shields, spoilers, etc. A third contributor is the increasing number of “what if” exploratory studies performed early in the design process when the design is relatively fluid. Licensing costs for commercial CFD solutions become a significant constraint as the number of simulations expand. A number of alternative products (independently developed, supported and documented forks of the popular OpenFOAM® toolbox) have become available in recent years offering a lower cost alternative to traditional commercial CFD products.
2017-03-28
Technical Paper
2017-01-0175
Jing He, Bill Johnston, Debasish Dhar, Loren Lohmeyer
The traditionally used refrigerant in mobile air conditioning (MAC), R134a, has a high GWP of 1,300 and is to be banned in EU market for new passenger cars and light commercial vehicles from January 1, 2017. In US, EPA has listed R134a as unacceptable for new light-duty vehicles beginning in Model Year 2021. The natural refrigerant, R744 (CO2), remains a viable solution to replace R134a due to its environmental friendliness, low cost, non-flammability, and high volumetric heat capacity. One challenge of R744 vapor compression system is reduced efficiency with ambient temperature. Prior research has demonstrated that a parallel or multistage compression cycle represents a superior design to a conventional single-compression cycle in that it not only improves the optimum cooling efficiency, but also brings down the optimum discharge pressure.
2017-03-28
Technical Paper
2017-01-0626
LeeAnn Wang, George Garfinkel, Ahteram Khan, Mayur Harsha, Prashanth Rao
When a driver completes an aggressive drive cycle on a hybrid vehicle, the High Voltage (HV) battery system may risk exceeding the power limit temperature, due to continuous absorption of radiative and convective heat from the exhaust and pavement, even after key-off. In such case, the vehicle may not be keyed-on after a certain time. A transient thermal analysis is conducted on a HV battery system to simulate the key-off operation using Computational Fluid Dynamics (CFD). The analysis is partitioned into two stages, due to complex geometry and multiple phenomena captured in the model. The first stage involves two steady-state simulations. The first simulation is to model the HV battery system, during an aggressive drive cycle. The second simulation is to model the vehicle at an idle condition immediately after the aggressive drive cycle.
2017-03-28
Technical Paper
2017-01-0967
Xin Liu, Jeong Kim, Timothy Chanko, Christine Lambert, James Pakko
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metallic filters with a fibrous structure could offer additional designs to the current GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% and 90%) were evaluated using modeling to determine the influence of fiber size and porosity. A comparison of fibrous filters with their ceramic counterparts is also discussed.
2017-03-28
Technical Paper
2017-01-1622
Ronald Brombach, Anup Gadkari
The Body Control Module (BCM) is a huge integration site for vehicle features and functions.(i.e., Locking, Alarms, interior lighting, exterior lighting, etc…) . Every few years the demands to add more feature/functions and integrate more vehicle content increases. The expectation of the model year 2013 BCM, was to double the feature content and use it globally. The growth in feature/function content grew from 140 to over 300. This posed a major challenge to the current software development team based on the methods and process that were deployed at the time. This paper sites the cultural and technology changes that were overcome. Ford Motor Company partnered with Tata Consulting services to help manage and define this new software engineering development.
2017-03-28
Technical Paper
2017-01-0071
Vahid Taimouri, Michel Cordonnier, Kyoung Min Lee, Bryan Goodman
While operating a vehicle in either autonomous or occupant piloted mode, an array of sensors can be used to guide the vehicle including stereo cameras. The state-of-the-art distance map estimation algorithms, e.g. stereo matching, usually detect corresponding features in stereo images, and estimate disparities to compute the distance map in a scene. However, depending on the image size, content and quality, the feature extraction process can become inaccurate, unstable and slow. In contrast, we employ deep convolutional neural networks, and propose two architectures to estimate distance maps from stereo images. The first architecture is a simple and generic network that identifies which features to extract, and how to combine them in a multi-resolution framework. The second architecture is a more specialized one that extracts local similarity information from two images, which are used for stereo feature matching, and fuses them at multiple resolutions to generate the distance map.
2017-03-28
Technical Paper
2017-01-1300
Raj Jayachandran, Bhimaraddi Alavandi, Matt Niesluchowski, Erika Low, Yafang Miao, Yi Zhang
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler, and oil coolers along with engine cooling fans. Typical automotive engine-cooling fan assembly includes an electric motor mounted on to a shroud that encloses radiator core. Typically a fan shroud is made of plastic material and holds one or two motors and is supported at four corners. One of the main drivers of a fan shroud design is Noise, Vibration, and Harshness requirements, without compromising the main function - airflow requirement for cooling. Usually, stiffness requirement is not given adequate attention in arriving at optimal design of a fan shroud. Research Council for Automotive Repairs (RCAR), based in Europe, issues vehicle ratings on the basis of its performance in Low Speed Damageability (LSD) tests. One such test is a 15kph, 40% offset rigid wall impact to the front of the vehicle.
2017-03-28
Technical Paper
2017-01-1202
Ben Tabatowski-Bush
The Battery Monitoring Integrated Circuit (BMIC) is a key technology for Battery Electronics in the electrification of vehicles. Generally speaking, every production hybrid, plug-in hybrid, and battery electric vehicle uses some type of BMIC to monitor the voltage of each lithium battery cell. In order to achieve Functional Safety for the traction battery packs for these electrified vehicles, most designs require higher ASIL ratings for the BMIC such as C or D. For the entire market of available BMIC’s, there is a generic feature set that can be found on almost every IC on the market, such as a front end multiplexer, one or more precision references, one or more Analog to Digital (A/D) converters, a power supply, communications circuits, and window comparators. There is also a fairly consistent suite of self-diagnostics, available on just about every available BMIC, to detect failures and enable achievement of the appropriate ASIL rating.
2017-03-28
Technical Paper
2017-01-0107
Arvind Jayaraman, Ashley Micks, Ethan Gross
Recreating traffic scenarios for testing autonomous driving in the real world requires significant time, resources and expense, and can present a safety risk if hazardous scenarios are to be tested. Having a 3D virtual environment to enable testing many of these traffic scenarios on the desktop or on a cluster reduces the amount of required road tests significantly. In order to facilitate the development of perception and control algorithms for level 4 autonomy, with potential applications to level 2 active safety systems as well, a shared memory interface between MATLAB/Simulink and Unreal Engine 4, such that perception and/or control algorithms running within or interfacing with MATLAB/Simulink can receive virtual sensor data generated in an Unreal Engine 3D virtual environment, and send information such as vehicle control signals back to the virtual environment.
2017-03-28
Technical Paper
2017-01-0341
Seyyedvahid Mortazavian, Javid Moraveji, Reda Adimi, Xingfu Chen
Engine camshaft cap components experience high number of fluctuating loads during engine operation. The problem is complicated in engines with variable cam timing, because the loading for these components are sensitive to engine valve timing (combustion phasing) which can lead to catastrophic overload or fatigue failures. Improving the design of these components using computer-aided tools can drastically reduce the cost and time to the market of the final acceptable design, by eliminating the number of physical prototypes. Hence, a decent and robust finite element analysis with representative load and boundary conditions can significantly reduce the premature failures in engine development. In this study, first a finite element analysis method is developed for simulating a cap punching bench test. Effect of punch radius and shape on the component stiffness is investigated and correlated with test data.
2017-03-28
Technical Paper
2017-01-0172
Suhas Venkatappa, Manfred Koberstein, Zhengyu Liu
Due to regulations related to global warming, the auto industry is transitioning to the use of a new refrigerant R1234yf in many markets/regions. This transition to the new refrigerant was considered to be a minor development effort with main focus on improved sealing, improving cooling capacity with adding content such as Internal Heat Exchanger (IHX) to recoup the lower cooling efficiency of R1234yf compared to R134a. There were no redesigns of major refrigerant system components expected with the introduction of R1234yf. The actual implementation of this refrigerant has proven to be more challenging due to several NVH issues. Some of the challenges related to NVH are driven by the differences in refrigerant characteristics – mass flow rate, velocity of sound in refrigerant.
2017-03-28
Technical Paper
2017-01-0183
Mingyu Wang, Timothy Craig, Edward Wolfe, Tim J LaClair, Zhiming Gao, Michael Levin, Danrich Demitroff, Furqan Shaikh
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by electrical energy from the traction battery. In very cold climatic conditions, the driving range of an EV can be reduced by 50% or more. To minimize this EV range penalty, a novel thermal energy storage system has been designed to provide cabin heat in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) using the stored latent heat from an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS). When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” by melting the PCM. The stored thermal energy is subsequently deployed for cabin heating during driving.
2017-03-28
Technical Paper
2017-01-0171
Quansheng Zhang, Yan Meng, Christopher Greiner, Ciro Soto, William Schwartz, Mark Jennings
In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
2017-03-28
Technical Paper
2017-01-1230
Cyrille Goldstein, Joel Hetrick
Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive. With an Interior Permanent Magnet (IPM) machine, measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag. This model was compared to experimental results and a sensitivity study was completed to understand inaccuracies in the model. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to evaluate design choices that could reduce mechanical losses.
Viewing 1 to 30 of 1531

Filter

  • Range:
    to:
  • Year: