Criteria

Text:
Display:

Results

Viewing 1 to 30 of 123
2016-09-20
Technical Paper
2016-01-2026
Dhwanil Shukla, Nandeesh Hiremath, Narayanan Komerath
Rigid or semi-rigid airships are gaining appeal for several applications requiring steady cargo transport, long endurance, low downwash and noise over populated areas, and rescue missions. Modern rigid-hulled airships use auxiliary lift and propulsion for the load-carrying segments of their operations. Tilting ducted fans and quad-rotors have been typically considered for the purpose. We are developing a concept where cycloidal rotors are used. These can operate both as lifting devices and as propulsive devices. The size of an airship allows the cylcoidal rotor to have a much larger diameter than on a helicopter, so that the rotation speed is low, and while minimizing downwash and noise. These features make the cycloidal rotor/airship combination ideas for the hypercommuting-on-demand application over congested urban and suburban areas. In this paper, the literature on hypercommuting, airships and cycloidal rotors will be surveyed.
2016-09-20
Technical Paper
2016-01-2056
Nikolaus Thorell, Vaibhav Kumar, Narayanan Komerath
A combat aircraft in landing approach is likely to encounter wind turbulence, causing the flow over its swept wings to be yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing. A 42 degree delta wing with rounded leading edges, roughly equivalent to a 1/25 scale of existing combat aircraft, is used in a 2.74 m low speed wind tunnel in the angle of attack range 18 to 35 degrees and at significant yaw settings.
2016-09-20
Technical Paper
2016-01-2010
Nandeesh Hiremath, Dhwanil Shukla, Narayanan Komerath
The design of advanced rotorcraft hinges on knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form above and below the rotor, and their evolution has a sharp influence on the aerodynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To capture the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. A 2-bladed teetering rotor with collective and cyclic pitch controls is used in a 2.74m wind tunnel, under conditions of dynamic stall and then in reverse flow. Stereoscopic particle image velocimetry us used. Recently we have shown that the accuracy of stereoscopic particle image velocimetry has reached the point where velocity measurements can be converted to pressure both at and away from the blade surface.
2016-09-20
Technical Paper
2016-01-2009
Natasha Barbely, Narayanan Komerath, Nandeesh Hiremath
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor edgewise forward flight speeds. Lower tip speed means reduced high speed impulsive noise. The need for an anti-torque tail rotor is eliminated, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possibilities for aerodynamic interactions between rotor blades, blades and vortices, and between vortices. The parameter design space is very large, and requires efficient computations as well as basic experiments to explore important physics determines performance, loads, and acoustics. Computations are done on the classic Harrington/Dingeldein rotor test case from the 1950s using the ROTUNS Navier Stokes code as well as the NASA OVERFLOW and/or HELIOS codes.
2016-04-05
Technical Paper
2016-01-1245
Jonathan D. Cox, Michael Leamy
Abstract The Georgia Tech EcoCAR 3 team’s selection of a parallel hybrid electric vehicle (HEV) architecture for the EcoCAR 3 competition is presented in detail, with a focus on the team’s modeling and simulation efforts and how they informed the team’s architecture selection and subsequent component decisions. EcoCAR 3, sponsored by the United States Department of Energy and General Motors, is the latest in a series of Advanced Vehicle Technology Competitions (AVTCs) and features 16 universities from the United States and Canada competing to transform the 2016 Chevrolet Camaro into a hybrid electric American performance vehicle. Team vehicles will be scored on performance, emissions, fuel economy, consumer acceptability, and more over the course of the four-year competition. During the first year, the Georgia Tech team considered numerous component combinations and HEV architectures, including series RWD and AWD, parallel, and power-split.
2016-04-05
Journal Article
2016-01-0745
Benjamin Knox, Caroline Genzale
Abstract End-of-injection transients have recently been shown to be important for combustion and emissions outcomes in diesel engines. The objective of this work is to develop an understanding of the coupling between end-of-injection transients and the propensity for second-stage ignition in mixtures upstream of the lifted diesel flame, or combustion recession. An injection system capable of varying the end-of-injection transient was developed to study single fuel sprays in a newly commissioned optically-accessible spray chamber under a range of ambient conditions. Simultaneous high-speed optical diagnostics, namely schlieren, OH* chemiluminescence, and broadband luminosity, were used to characterize the spatial and temporal development of combustion recession after the end of injection.
2016-01-29
Article
Researchers from the Georgia Institute of Technology, the University of Illinois at Urbana-Champaign, and the University of Tokyo have taken a keen interest in origami, which they believe may soon provide a foundation for antennas that can reconfigure themselves to operate at different frequencies.
2015-09-15
Technical Paper
2015-01-2574
Nicholas R. Motahari, Franklin Turbeville, Nandeesh Hiremath, Narayanan Komerath
Abstract The interest in flying cars comes with the question of characterizing aerodynamic loads on shapes that go beyond traditional aircraft shapes. When carried as slung loads under aircraft, vehicles can encounter severe aerodynamic loads, which may also cause them to go into divergent oscillations that can threaten the vehicle and aircraft. Slung loads can encounter the wind at arbitrary attitudes. Flight test certification for every vehicle-aircraft combination is prohibitive. Characterizing the aerodynamic loads with sufficient resolution for use in dynamic simulation, has in the past been extremely arduous. Sharp changes that drive instabilities arise over small ranges of yaw and pitch. With the Continuous Rotation technique developed by our group, aerodynamic load characterization is viable and efficient. With two well-chosen attitude sweeps and appropriate transformations, the entire 6-DOF load map can be obtained, for several rates.
2015-09-15
Technical Paper
2015-01-2572
Nikolaus Thorell, Nicholas R. Motahari, Narayanan Komerath
Abstract At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
2015-09-15
Technical Paper
2015-01-2570
Brandon Liberi, Praditukrit Kijjakarn, Narayanan Komerath
Abstract Loads slung under aircraft can go into divergent oscillations coupling multiple degrees of freedom. Predicting the highest safe flight speed for a vehicle-load combination is a critical challenge, both for military missions over hostile areas, and for evacuation/rescue operations. The primary difficulty was that of obtaining well-resolved airload maps covering the arbitrary attitudes that a slung load may take. High speed rotorcraft using tilting rotors and co-axial rotors can fly at speeds that imply high dynamic pressure, making aerodynamic loads significant even on very dense loads such as armored vehicles, artillery weapons, and ammunition. The Continuous Rotation method demonstrated in our prior work enables routine prediction of divergence speeds. We build on prior work to explore the prediction of divergence speed for practical configurations such as military vehicles, which often have complex bluff body shapes.
2015-06-15
Technical Paper
2015-01-2088
Richard E. Kreeger, Lakshmi Sankar, Robert Narducci, Robert Kunz
Abstract The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
2015-04-14
Technical Paper
2015-01-1158
Justin Wilbanks, Fabrizio Favaretto, Franco Cimatti, Michael Leamy
Abstract This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
2015-04-14
Technical Paper
2015-01-1219
Jerome Meisel, Wassif Shabbir, Simos A Evangelou
Abstract Using measurable physical input variables, an implementable control algorithm for parallel architecture plug-in and non-plug-in hybrid electric vehicle (PHEV and HEV) powertrains is presented. The control of the electric drive is based on an algebraic mapping of the accelerator pedal position, the battery state-of-charge (SOC), and the vehicle velocity into a motor controller input torque command. This mapping is developed using a sequential linearization control (SLC) methodology. The internal combustion engine (ICE) control uses a modified accelerator pedal to throttle plate angle using an adjustable gain parameter that, in turn, determines the sustained battery SOC. Searches over an admissible control space or the use of pre-defined look-up tables are thus avoided. Actual on-road results for a Ford Explorer with a through-the-road (TTR) hybrid powertrain using this control methodology are presented.
2015-04-14
Journal Article
2015-01-0941
Gina M. Magnotti, Caroline L. Genzale
Abstract Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
2015-04-14
Journal Article
2015-01-0482
Naijia Xiao, Rafi L. Muhanna, Francesco Fedele, Robert L. Mullen
Abstract We present a new interval-based formulation for the static analysis of plane stress/strain problems with uncertain parameters in load, material and geometry. We exploit the Interval Finite Element Method (IFEM) to model uncertainties in the system. Overestimation due to dependency among interval variables is reduced using a new decomposition strategy for the structural stiffness matrix and the nodal equivalent load vector. Primary and derived quantities follow from minimization of the total energy and they are solved simultaneously and with the same accuracy by means of Lagrangian multipliers. Two different element assembly strategies are introduced in the formulation: one is Element-by-Element, and the other resembles conventional assembly. In addition, we implement a new variant of the interval iterative enclosure method to obtain outer and inner solutions. Numerical examples show that the proposed interval approach guarantees to enclose the exact system response.
2015-04-14
Journal Article
2015-01-0484
Naijia Xiao, Rafi L. Muhanna, Francesco Fedele, Robert L. Mullen
Abstract We analyze the frequency response of structural dynamic systems with uncertainties in load and material properties. We introduce uncertainties in the system as interval numbers, and use Interval Finite Element Method (IFEM). Overestimation due to dependency is reduced using a new decomposition for the stiffness and mass matrices, as well as for the nodal equivalent load. In addition, primary and derived quantities are simultaneously obtained by means of Lagrangian multipliers that are introduced in the total energy of the system. The obtained interval equations are solved by means of a new variant of the iterative enclosure method resulting in guaranteed enclosures of relevant quantities. Several numerical examples show the accuracy and efficiency of the new formulation.
2015-04-14
Journal Article
2015-01-0797
Benjamin W Knox, Caroline L Genzale, Lyle M Pickett, Jose M Garcia-Oliver, Walter Vera-Tudela
Abstract This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
2014-04-01
Technical Paper
2014-01-1958
Bert Bras, Andrew Carlile, Thomas Niemann, Sherry Mueller, Hyung Chul Kim, Timothy Wallington, Heidi McKenzie, Susan Rokosz
Abstract Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
2014-02-24
Article
Rooftop solar cells and lens canopy enable the C-MAX to go 21 battery-only miles after an 8-h recharge.
2013-04-08
Technical Paper
2013-01-1102
Gina M. Magnotti, Caroline L. Genzale
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
2013-04-08
Journal Article
2013-01-0815
Dekun Pei, Michael Leamy
This paper presents a forward-looking simulation (FLS) approach for the front wheel drive (FWD) General Motors Allison Hybrid System II (GM AHS-II). The supervisory control approach is based on a dynamic programming-informed Equivalent Cost Minimization Strategy (ECMS). The controller development uses backward-looking simulations (BLS), which execute quickly by neglecting component transients while assuming exact adherence to a specified drive cycle. Since ECMS sometimes prescribes control strategies with rapid component transients, its efficacy remains unknown until these transients are modeled. This is addressed by porting the ECMS controller to a forward-looking simulation where component transients are modeled in high fidelity. Techniques of implementing the ECMS controller and commanding the various power plants in the GM AHS-II for FLS are discussed.
2013-04-08
Technical Paper
2013-01-0495
Benjamin Lee, Daniel Boston, Qinpeng Wang, Godfried Augenbroe, Bert Bras, Tina Guldberg, Christiaan Paredis, Michael Tinskey, Donna Bell
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
2012-10-22
Journal Article
2012-01-2180
Angela Lowe, Dimitri N. Mavris
Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
2012-04-16
Technical Paper
2012-01-0646
Bert Bras, Francisco Tejada, Jeff Yen, John Zullo, Tina Guldberg
Numerous studies have pointed out the growing need to assess the availability of water sources in numerous regions around the world as future forecasts suggest that water demands will increase significantly while freshwater resources are being depleted. In this paper, we highlight the difference between water use versus consumption and analyze the life-cycle water consumption of a car from material extraction through production, use, and final disposition/end of life and determine a car's water footprint using data from the EcoInvent database as well as data collected from literature sources. Although water use is typically metered at the factory level, water consumption (i.e., water lost through evaporation and/or incorporation into a material, part, and/or product) is much harder to quantify. As shown in this paper, the difference can be an order of magnitude or more.
2012-04-16
Journal Article
2012-01-0695
Tetsuya Aizawa, Hiroki Nishigai, Katsufumi Kondo, Teruo Yamaguchi, Jean-Guillaume Nerva, Caroline Genzale, Sanghoon Kook, Lyle Pickett
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
2012-04-16
Journal Article
2012-01-0629
John Arata, Michael Leamy, Kenneth Cunefare
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
2012-04-16
Technical Paper
2012-01-1051
Bert Bras, Tina Guldberg
In this paper, we quantify several environmental benefits associated with using ultra fine scrap tire rubber powders in virgin and recycled rubber and plastics compounds. Specifically, we will analyze the savings in oil extraction and rubber production in comparison to the rubber powder production using cryogenic grinding. The analysis uses first hand factory data provided by a rubber powder producer. As will be shown, even though cryogenic nitrogen requires production and use of liquid nitrogen, there is still a net environmental benefit in terms of energy use and greenhouse gas emissions.
2011-09-13
Journal Article
2011-01-2171
Qingmin Huang, Jin Huang, Aiguo Cheng
Suspension system dynamics can be obtained by various methods and vehicle design has gained great advantages over the dynamics analysis. By employing the new Udwadia-Kalaba equation, we endeavor some attempts on its application to dynamic modeling of vehicle suspension systems. The modeling approach first segments the suspension system into several component subsystems with kinematic constraints at the segment points released. The equations of motion of the unconstrained subsystems are thus easily obtained. Then by applying the second order constraints, the suspension system dynamics is then obtained. The equations are of closed-form. Having the equations obtained, we then show its application on dynamical load analysis. The solutions for the dynamical loads at interested hard points are obtained. We use the double wishbone suspension to show the systematic approach is easy handling.
2011-08-30
Technical Paper
2011-01-2046
Jean-Guillaume Nerva, Teruo Yamaguchi, Hiroki Iguma, Hiroki Nishigai, Katsufumi Kondo, Satoshi Takano, Tetsuya Aizawa, Caroline L. Genzale, Lyle M. Pickett
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
2011-06-13
Technical Paper
2011-38-0090
Jeremy Bain, Lakshmi N. Sankar, Roger J. Aubert, Robert J. Flemming
An integrated approach for modeling the ice accretion and shedding of ice on helicopter rotors is presented. A modular framework is used that includes state of the art computational fluid dynamics, computational structural dynamics, rotor trim, ice accretion, and shedding tools. Results are presented for performance degradation due to icing, collection efficiency, surface temperature and water film properties associated with runback-refreeze phenomena, and shedding. Comparisons with other published simulations and test data are given.
Viewing 1 to 30 of 123

Filter

  • Range:
    to:
  • Year: