Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 188
2015-04-14
Technical Paper
2015-01-0354
Ji Wan Kim, Tae Hee Lee
An odor emitting from the evaporator in an air-conditioning system were analyzed that it was caused by microbial VOCs(Volatile Organic Compounds). This study about an automotive air-conditioning causing an odor is to analyze microbial diversity and community. The next-generation sequencing method was used for this analysis, which does This next-generation sequencing method, not cultivating through molecular microbiological techniques, has been developed most recently and in wide use. Moreover, this method can also analyze microorganism which has not been cultured, and produces a result which is closer to actual one in a short amount of time and a larger number of sequences. According to the analysis result about a total of 24 samples of bacterial communities, it was found that Eva core was exposed to a small number of bacteria due to its limited specificity in material and environment. The cluster analysis showed that a specific group of bacteria formed a biofilm.
2015-04-14
Technical Paper
2015-01-1188
Seongjun Yun, SungJin Park, Daekwang Kim, Junyong Lee, Sejun Kim, Kwang-yeon Kim
The fuel economy of a vehicle can be improved by recuperating the kinetic energy when the vehicle is decelerated. However, if there is no electrical traction component, the recuperated energy can be used only by the other electrical systems of the vehicle. Thus, the fuel economy improvement can be maximized by balancing the recuperated energy and the consumed energy by electrical systems of the vehicle. Also, suitable alternator and battery management is required to maximize the fuel economy. This paper describes a design optimization process of the alternator and battery system equipped with recuperation control algorithms for a mid-sized sedan based on the fuel economy and system cost. A vehicle model using AVL Cruise is developed for driving cycle simulations and validated with experimental data. The validated model is used for the parametric study and design optimization of the alternator and battery system with single and dual energy storage.
2015-04-14
Journal Article
2015-01-1566
Youngil Koh, Kyongsu Yi, Kilsoo Kim
This paper presents a tire slip-angle based speed control race driver model. In developing a chassis control system for enhancement of high-speed driving performance, analysis of the vehicle-driver interaction at limit handling is one of the main research issues. Thus, a driver model which represents driving characteristics in a racing situation is required to develop a chassis control system. Since a race driver drives a vehicle as fast as possible on a given racing line without losing control, the proposed driver model is developed to ensure a lateral stability. In racing situation, one of the reasons which cause the lateral instabilities is an excessive corner-entry speed. The lateral instability in that moment is hard to handle with only a steering control. To guarantee the lateral stability of the vehicle while maximizing a cornering speed, a desired speed is determined to retain a tire slip-angle that maximizes lateral tire forces without front tire saturation.
2015-04-14
Technical Paper
2015-01-0685
Jeong Uk Ahn, Sung Moon Choi
Most bucket type valvetrain engines have used a DLC coated tappet for low friction and fuel efficiency. However the requirements on coating robustness have been increased as the tribological environments have become more severe by use of lower viscosity oil or higher engine output. In order to obtain higher coating efficiency and improved wear resistance, 5~9 at.% Si doped DLC (Si-DLC) coated tappet has been developed using PACVD process. Thermal stability and wear resistance of Si-DLC were improved impressively than those of DLC, although mechanical properties such as hardness and adhesion were a little degradated. It seems that Si suppresses a graphitization of DLC and thin SixOy film on coating surface acts as a barrier to oxidation or flash heat.
2015-04-14
Technical Paper
2015-01-1312
MyoungKwon Je
The power sliding door system(PSD) is being equipped in the MPV(Multi-Purposd Vehicle) vehicle for convenience in the door operation. This study will be done to optimize package for interior design and package in the vehicle which equips PSD system. To optimize the package, investigation for PSD's structure need to be done and the examples of other vehicle maker will be investigated and compared. And the study to reconcile between the performance and good package of PSD system made the unique PSD design method in this study. And finally, this study will show the result vehicle in which the optimized mechanism is applied. So we will realize the effect from this study.
2015-04-14
Journal Article
2015-01-1309
Hyunggyung Kim
This paper describes about the development of new concept’s rear wheel guards for the reduction of Road Noise in the passenger vehicle using test. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance test and vehicle test. Through new developing process without vehicle test, Result of road noise will be expected when new concepts and materials of wheel guard is applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0 dB The suggested Estimation method of part reverberant absorption method is similar to result of vehicle tests by part absorption index. Furthermore, optimization of frequency band to wheel guards will reduce more 0.5 dB noises in vehicle.
2015-03-10
Technical Paper
2015-01-0061
YongKew Kim
Abstract The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
2015-03-10
Technical Paper
2015-01-0028
Jihyun An, Seungwon Yoo, KwangChan Ko, Jongchan Park
Abstract This paper presents an industrial application of the Analytical Target Cascading (ATC) methodology to the optimal design of commercial vehicle steering and suspension system. This is a pilot study about the suspension and steering design of a semi medium bus, whose objective is to develop and introduce an ATC methodology to an automobile development process. In the conventional process, it is difficult not only to find design variables which meet the target of Ride and Handling (R&H) performance using a detailed full car model, but also to figure out the interrelation between the vehicle and its subsystems. In this study, ATC methodology is used in order to obtain the optimal values such as geometric characteristics satisfying both the vehicle's R&H target and the subsystem (suspension and steering system) 's target.
2015-03-10
Technical Paper
2015-01-0065
Kong Byungseok
Abstract In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), we developed the new IP which is made by the 2 kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger-side airbag (PAB) door. We named it ‘IMX-IP’ which means that all components (‘X’) of the IP with different resins are made In a Mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ application, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE method for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot molding with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.
2015-03-10
Technical Paper
2015-01-0010
Sungwon Lee, Seung Jeon, Jae Woon Lee, Cha-Sub Lim
Abstract In this study, several design factors are considered to predict door deformation. Door deformation is mainly influenced by air flow around A-pillar and door static stiffness. Therefore design factors can be divided into two categories. First, design elements determined by the appearance of a car affect to the air flow around A-pillar. Second, door static stiffness is determined by engineering design parameters. Kriging method is used to predict door deformation by means of the design factors. Door deformation can be successfully predicted with this method.
2015-03-10
Technical Paper
2015-01-0018
Dongwon Yeon
Abstract There are some problems “windows fog up a lot” for ventilation system. We have Test Development Procedure to prevent the fog problems. But, Many fog problems occurred in the cars that we made. So in this paper, new ventilation system is needed and developed. The Smart Ventilation System automatically controls indoor air quality even though the blower motor is off. There are two sensors that is used for AutoDefogSensor system and CO2 CONTROL system.. The sensor is on when blower motor and heater control is off. We use these signals and make new ventilation logics. We evaluate this system in chamber & '13 winter test in USA.
2015-03-10
Technical Paper
2015-01-0019
Heeyun Lee, Suk Won Cha, Hyunsup Kim, Seok-Joon Kim
Abstract This paper is concerned with the energy management strategy of hybrid electric vehicle using stochastic dynamic programming. The aim is the control strategy of the power distribution for hybrid electric vehicle powertrains to minimize fuel consumption while maintaining drivability. The fuel economy of hybrid electric vehicle is strongly influenced by power management control strategy. Rule-based control strategy is popular strategy thanks to its effectiveness in real-time implementation, but rule should be designed and efficiency of entire drive trains is not optimized. Dynamic programming, one of optimization-based control strategy presents outstanding performance, but cannot be used as real-time control strategy directly, since its non-causal property and drawback that global optimal solution can only be obtained for specific driving cycle.
2015-03-10
Technical Paper
2015-01-0024
Jaehaeng Yoo
Abstract For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
2015-03-10
Technical Paper
2015-01-0034
Mingyu Choi
Abstract The need for a voice recognition system in the automotive industry is growing day by day. In our current voice recognition system, Hyundai's ‘Blue-Link’ and KIA's ‘UVO’ are developed with Microsoft which is a global software company. The system launched domestic market recently. Since usage of voice recognition system are increasing, research and development of Voice Recognition system also increase very fast. Research is mostly focus on increase recognition rate of speech. However there is no research of interior layout considering voice recognition usability. So in this research, we discover interior design factors for maximizing voice recognition usability.
2015-03-10
Technical Paper
2015-01-0064
Sung Hoon Cho
Abstract The rollcage for WRC race body/rollcage has been developed and optimized by DFSS methodology. It is designed on the principle of reducing it to a Min. of weight compared to the other OEM and the initial set-up model with the torsional stiffness and strength increased. As a result, 12% increased torsional stiffness, maximized strength and 3.7% weight reduction could be achieved. In terms of economics, it is feasible to have a production cost savings of about 11% per car and the effect is further, considering the development period is substantially decreased, 5 to 2 months. Also, in the process of optimizing rollcage structure, applicable items to monocoque body are suggested by investigating the parts and structures that highly affect the body performance.
2015-03-10
Technical Paper
2015-01-0025
Jaeyong Park, Joonhong Park, JinHee Lee, Yong-Sub Yi, TeaWon Park
We often can see vehicles wobble passing through the crosswind in high-way. This paper discusses the description and investigation of crosswind stability of sedans. This researchs mainly were carried out to be based on the simulation analysis. The research outline is as in the following. (1)Vehicle-Driver-Crosswind generator model & mutual link model building (2)Crosswind stability assessment scenario & criteria establishment for simulation (3)Design parameters sensitivity analysis for crosswind stability using the above simulation environment (4)Objective function making & dominant deshgn parameters selection relevant to crosswind stability (5)Design parameter's adequate range decision & optimization for crosswind stability
2014-10-13
Technical Paper
2014-01-2810
Kihyung Joo, Jin Woo Park, Jin-ha Lee, Seok-Jae Kim, Seungbeom Yoo
Abstract In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
2014-06-30
Technical Paper
2014-01-2085
Ki-Sang Chae, Seung Hwan Lim, Ji Woo Yoo, Seok-Gil Hong
Abstract Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
2014-06-30
Journal Article
2014-01-2088
Daniel Fernandez Comesana, Emiel Tijs, Daewoon Kim
Abstract For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
2014-06-30
Journal Article
2014-01-2081
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
2014-06-30
Journal Article
2014-01-2080
Ze Zhou, Jonathan Jacqmot, Gai Vo Thi, ChanHee Jeong, Kang-Duck Ih
Abstract The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment.
2013-10-14
Technical Paper
2013-01-2589
Seongyoon Bae, Koo-Tae Kang, Kwangmin Won, Choonggeun Nam
In this paper, the vibration and noise reduction technology for diesel common rail injection system is studied. The NV problems of the injection system come typically from mechanical contacts (injector needle, pump) or fluid pulsations. They are exciting the injection system, which translates the excitations to the engine through the connection points. But it's not easy to identify the characteristic of internal excitation force exactly, so the simulation model based measurement test is considered at here. In order to predict the vibrations due to excitation related with the injection system of the diesel engine, the 1D/3D simulation models are used and the necessary dynamic tests, which are needed to create and validate the models, are done in the test bench.
2013-10-14
Technical Paper
2013-01-2542
Jihun Han, Youngjin Park, Dongsuk Kum, Seongpil Ryu, Youn-sik Park
This study investigates how hilly road profiles affect the optimal energy management strategy for fuel cell hybrid electric vehicle (FCHEV) with various battery sizes. First, a simplified FCHEV model is developed to describe power and energy flows throughout the powertrain and evaluate hydrogen consumption. Then, an optimal control problem is formulated to find the globally optimal energy management strategy of FCHEV over driving cycles with road elevation profile. In order to solve the optimal energy management problem of the FCHEV, Dynamic Programming, a dynamic optimization method, is used, and their results are analyzed to find out how hilly road conditions affect the optimal energy management strategies. The results show that the optimal energy management with a smaller battery tends to actively prepare (e.g. pre-charge/pre-discharge) for uphill/downhill roads in order not to violate the battery state of charge (SoC) bounds.
2013-10-14
Technical Paper
2013-01-2650
Sung-Jun Kim, Soungjae Hyun, JaeIn Park
The purpose of this paper is to investigate the mixture formation and optimize the operating conditions under cold start in a stoichiometric (λ=1) GDI engine with wall-guided piston using a 3D commercial code, STAR-CD [8]. For GDI engine under cold start, it can be difficult to carry out the optimization of operating conditions by engine test alone without the understanding of mixture formation inside the combustion chamber. In this study, three cold start conditions of the catalyst heating mode with split injection, the cranking under freezing temperature and acceleration before engine warm-up which causes oil dilution were calculated. In particular, injection strategy for each cold start condition were optimized and compared to the engine test data. The previously validated spray models [6] were applied to the analysis of the spray formation and mixing process inside the combustion chamber.
2013-10-14
Technical Paper
2013-01-2643
Han Sang Kim, Sang Joon Park
SUS exhaust manifold is weaker than cast iron in aspect of high temperature vibration. So as to improve reliability of SUS exhaust manifold and get over gas temperature limit, exhaust manifold vibration mode and level has to be decreased. And because of error and limit of conventional modal analysis, we measured vibration mode and level of SUS exhaust manifold directly in engine firing condition. To measure vibration of hot parts(600∼800°C) in engine, we used special cooling device at base of accelerometer. Thus we developed analysis method of SUS exhaust manifold crack mechanism. We came to know the accurate vibration mode and level of SUS exhaust manifold in hot condition. Besides, we found out in proportion as vibration level increases endurance life decreases.
2013-10-14
Technical Paper
2013-01-2641
Kitack Lim, Jin-Woo Cho
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
2013-10-14
Technical Paper
2013-01-2514
Kibong Yoon, Inje Oh, Jae Ik Ahn, Sangyun Kim, Young Chong Chung
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
2013-05-13
Technical Paper
2013-01-1983
Seonghyeon Kim, Dong Chul Park, Seokgwan Hong, Philipp Sellerbeck, Andre Fiebig, Michael Csakan, Chahe Apelian
The sound sources of modern road vehicle can be classified into three components, driving sound (sound generated through normal driving patterns and events), operating sound (sound generated through actuated components not related to driving), and generated synthetic sound (electronic warning / interactive feedback). The characteristic features of these sounds are dependent upon customer expectation and usage requirements. Additional development complexities are introduced due to each market's cultural and regional differences. These differences in preference must be considered for the establishment of the target sound quality in the early vehicle development process. In this paper, a sound quality goal setting procedure based on user preference is introduced. The sound targets are created as a result of the user preference investigation and validated by intercultural comparison.
2013-04-08
Technical Paper
2013-01-1177
Chi-Hoon Choi, Jeong-Min Cho, Yongkil Kil, Yonghoon Yoon
A battery pack case of an electric vehicle was developed with a fibrous thermoplastic composite material. Due to cost effectiveness, long-fiber-reinforced thermoplastics by direct process (D-LFT) was adopted. PA6 (Polyamide 6)-based composites were processed using a D-LFT pilot machine at the temperature range between 250° and 290°. Glass and carbon fibers were added in the matrix varying the mixture ratio of the fibers while keeping the weight fraction 40%. The increase of carbon fibers in the mixture increased tensile modulus and strength, however, decreased Izod impact strength. The fatigue life of developed composites was evaluated by fatigue tests in tension, which was over one million cycles at the maximum fatigue loading less than 60% of the composite strength. Associated with fiber orientation, anisotropic mechanical behavior was investigated in terms of flexural properties and mold shrinkage.
2013-04-08
Technical Paper
2013-01-1211
Jihoon Moon, Seunghun Ryu, Wookjin Na
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Viewing 1 to 30 of 188

Filter

  • Range:
    to:
  • Year: