Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 95
Technical Paper
2010-10-25
David Serrano, Olivier Laget, Dominique Soleri, Stephane Richard, Benoit Douailler, Frederic Ravet, Marc Moreau, Nathalie Dioc
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR. The main objectives are to identify the complex mechanisms involved in the combustion process and to define the optimal hydrogen ratio for each combustion mode.
Technical Paper
2010-10-25
Patricia Anselmi, Julian Kashdan, Guillaume Bression, Edouard Ferrero-Lesur, Benoist Thirouard, Bruno Walter
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture. However, conventional strategies no longer apply and new injection patterns must be defined to optimise the combustion.
Technical Paper
2010-10-25
Adrien Halle, Alexandre Pagot
The benefits of running on ethanol-blended fuels are well known, especially global CO₂ reduction and performances increase. But using ethanol as a fuel is not drawbacks free. Cold start ability and vehicle autonomy are appreciably reduced. These two drawbacks have been tackled recently by IFP and its partners VALEO and Cristal Union. This article will focus on the second one, as IFP had the responsibility to design the powertrain of a fully flex-fuel vehicle (from 0 to 100% of ethanol) with two main targets: reduce the fuel consumption of the vehicle and maintain (at least) the vehicle performances. Using a MPI scavenging in-house concept together with turbocharging, as well as choosing the appropriate compression ratio, IFP managed to reach the goals. Thanks to the adaptation of the inlet manifold, the intake camshaft as well as the piston and con-rod coupling, the 2L engine with a compression ratio of 10.5 delivers with RON 95 unleaded fuel a maximum torque of 290 Nm constant between 2000 rpm and 3500 rpm, and 142 kW at 5500 rpm.
Technical Paper
2010-10-25
Lyle M. Pickett, Caroline L. Genzale, Gilles Bruneaux, Louis-Marie Malbec, Laurent Hermant, Caspar Christiansen, Jesper Schramm
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and using the same injector specifications (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging.
Technical Paper
2010-05-05
L. Starck, A. Faraj, H. Perrin, L. Forti, N. Jeuland, B. Walter
Faced with the need to reduce greenhouse gas emissions, diesel engines present the advantage of having low CO₂ emission levels compared to spark-ignited engines. Nevertheless, diesel engines still suffer from the fact that they emit pollutants and, particularly nitrogen oxides (NOx) and particulates (PM). One of the most promising ways to meet this challenge is to reduce the compression ratio (CR). However a current limitation in reducing the diesel CR is cold start requirements. In this context, the fuel characteristics such as the cetane number, which represents ignition, and volatility could impact cold start. That is why a matrix of 8 fuels was tested. The cetane number ranges from 47.3 to 70.9 and the volatility, represented by the temperature necessary to distillate 5% of the product (T5%), ranges from 173 to 198°C. The engine tests were carried out at -25°C, on a common rail 4-cylinder diesel engine. Two engine configurations were studied: a nominal CR of 16:1 and a reduced CR of 14:1.
Technical Paper
2010-05-05
Maria Thirouard, Pierre Pacaud
In the context of CO₂ emission regulations and increase of energy prices, the downsizing of engine displacement is a widely discussed solution that allows a reduction of fuel consumption. However, high power density is required in order to maintain the power output and a good driveability. This study demonstrates the potential to strongly increase the specific power of High Speed Diesel Injection (HSDI) diesel engines. It includes the technological requirements to achieve high specific power and the optimal combination of engine settings to maximize specific power. The results are based on experimental work performed with a prototype single-cylinder engine (compression ratio of 14). Tests were conducted at full load, 4000 rpm. Part load requirements are also taken into account in the engine definition to be compatible with the targets of new emission standards. The influence of boost pressure, peak in-cylinder pressure, injection pressure and nozzle flow rate on full load limitations (exhaust temperature and smoke level) is studied to define the technological requirements for a power density of 80, 85 or 90 kW/l.
Technical Paper
2010-05-05
Vivien Delpech, Jerome Obiols, Dominique Soleri, Laurent Mispreuve, Eric Magere, Sebastien Kermarrec
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane. This paper describes how the CIGAL™ (Concomitant Injection of Gas And Liquid fuels) concept can generate a synergy effect between both fuels, which allows combustion efficiency to be increased significantly on turbocharged SI engines.
Technical Paper
2010-05-05
Sebastien Magand, Bertrand Lecointe, Fabien Chaudoye, Michel Castagne
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations. After a first part devoted to a description of the fuel properties, the paper focuses on some combustion analysis pointing out the effects of the new formulation.
Article
2010-04-23
The European research project called Large-Eddy & System Simulation to predict Cyclic Combustion Variability in gasoline engines (LESSCCV) recently was launched. Part of the Seventh Framework Programme for Research and Technological Development, the LESSCCV project aims to significantly improve the understanding and the modeling of cyclic variations in some major types of spark-ignition engines.
Technical Paper
2010-04-12
Stephane Jay, Olivier Colin
In the context of low consumption and low emissions engines development, combustion processes modeling is a challenging subject as the requirements for accurately controlled pollutant emissions are becoming more stringent. From a scientific point of view, it is a major source of in-depth investigations as the chemical processes involved are strongly coupled to the flow characteristics. Among the various approaches developed recently to account for these processes in realistic configurations, tabulated techniques appear to be a promising way. They induce a good compromise between the accuracy of detailed chemistry and the computational time necessary to calculate complex configurations. Tabulation approaches were firstly developed to address the modeling of species concentrations in stationary combustors. They consist basically of pre-computed chemical kinetics using detailed mechanisms. It has proved to be accurate in realistic stationary conditions featuring constant volume or constant pressure combustors.
Technical Paper
2010-04-12
Florence Duffour, Vincent Knop, Franck Vangraefschepe, Thomas Leone, Vincent Pascal
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile. The present study shows that intake valve-lift profile, air-fuel ratio and EGR are also relevant parameters to control CAI combustion mode.
Technical Paper
2010-04-12
Thomas Coppin, Olivier Grondin, Guenael Le Solliec, Laurent Rambault, Nezha Maamri
Among the last years, environmental concerns have raised the interest for biofuels. Ethanol, blended with gasoline seems particularly suited for the operation of internal combustion engines, and has been in use for severals years in some countries. However, it has a strong impact on engine performance, which is emphasized on recent engine architectures, with downsizing through turbocharging and variable valve actuation. Taking all the benefits of ethanol-blended fuel thus requires an adaptation of the engine management system. This paper intends to assess the effect of gasoline-ethanol blending from this point of view, then to describe a mean-value model of a fuel-flexible turbocharged PFI-SI engine, which will serve as a basis for the development of control algorithms. The focus will be in this paper on ethanol content estimation in the blend, supported by both simulation and experimental results.
Technical Paper
2010-04-12
Herve Perrin, Jean-Pierre Dumas, Olivier Laget, Bruno Walter
Future emissions standards for passenger cars require a reduction of NOx (nitrogen oxide) and CO₂ (carbon dioxide) emissions of diesel engines. One of the ways to reach this challenge while keeping other emissions under control (CO: carbon monoxide, HC: unburned hydrocarbons and particulates) is to reduce the volumetric compression ratio (CR). Nevertheless complications appear with this CR reduction, notably during very cold operation: start and idle. These complications justify intensifying the work in this area. Investigations were led on a real 4-cylinder diesel 13.7:1 CR engine, using complementary tools: experimental tests, in-cylinder visualizations and CFD (Computational Fluid Dynamics) calculations. In previous papers, the way the Main combustion takes place according to Pilot combustion behavior was highlighted. This paper, presents an in-depth study of mixture preparation and the subsequent combustion process. Using laser illumination techniques, in-cylinder visualizations highlight - even at low engine speed during cranking operation - the existence of swirl motion moving the fuel being vaporized inside the chamber.
Technical Paper
2010-04-12
Eric Watel, Alexandre Pagot, Pierre Pacaud, Jean-Christophe Schmitt
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified. Then, automated single-cylinder engine tests were performed using the design of experiment method in order to characterize engine responses and to identify the corresponding in-cylinder filling targets.
Technical Paper
2010-04-12
Louis-Marie Malbec, Gilles Bruneaux
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole. The results show that both the maximum air entrainment level and the total mass of entrained air are similar for all the injectors, and therefore are not affected by neighboring jets in the conditions studied.
Technical Paper
2010-04-12
Riccardo Ceccarelli, Philippe Moulin, Carlos Canudas de Wit
In nowadays diesel engine, the turbocharger system plays a very important role in the engine functioning and any loss of the turbine efficiency can lead to driveability problems and the increment of emissions. In this paper, a VGT turbocharger fault detection system is proposed. The method is based on a physical model of the turbocharger and includes an estimation of the turbine efficiency by a nonlinear adaptive observer. A sensitivity analysis is provided in order to evaluate the impact of different sensors fault, (drift and bias), used to feed the observer, on the estimation of turbine efficiency error. By the means of this analysis a robust variable threshold is provided in order to reduce false detection alarm. Simulation results, based on co-simulation professional platform (AMEsim© and Simulink©), are provided to validate the strategy.
Technical Paper
2010-04-12
Roda Bounaceur, Oliver Herbinet, Rene Fournet, Pierre-Alexandre Glaude, Frederique Battin-Leclerc, Antonio Pires da Cruz, Mohammed Yahyaoui, Karine Truffin, Gladys Moreac
An unified model with a single set of kinetic parameters has been proposed for modeling laminar flame velocities of several alkanes using detailed kinetic mechanisms automatically generated by the EXGAS software. The validations were based on recent data of the literature. The studied compounds are methane, ethane, propane, n-butane, n-pentane, n-heptane, iso-octane, and two mixtures for natural gas and surrogate gasoline fuel. Investigated conditions are the following: unburned gases temperature was varied from 300 to 600 K, pressures from 0.5 to 25 bar, and equivalence ratios range from 0.4 to 2. For the overall studied compounds, the agreement between measured and predicted laminar burning velocities is quite good.
Article
2010-03-15
IFP offers an integrated approach for predicting electric vehicle battery behavior, from improved electrochemical and thermal lumped-parameter modeling to the vehicle application as an alternative to equivalent circuit models.
Article
2010-03-15
France's IFP brings an integrated approach to SoC calculations to the SAE World Congress.
Technical Paper
2009-11-02
Stephane Zinola, Stephane Raux, Jean-Charles Dabadie
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Technical Paper
2009-11-02
B. Walter, H. Perrin, J. P. Dumas, O. Laget
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools. In-cylinder high speed visualizations allow to observe locally injection and combustion processes and to complete the standard combustion analysis operated from heat release which is a more global approach.
Technical Paper
2009-11-02
Sylvain Mendez, Julian T. Kashdan, Gilles Bruneaux, Benoist Thirouard, Franck Vangraefschepe
Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC. It was found that for the wall-guided combustion chamber geometry, the formation of liquid films and their subsequent emission was a significant source of UHC.
Article
2009-09-08
CTI (Céramiques Techniques et Industrielles) and the IFP have developed a SiC composite particulate filter with improved filtration efficiency that targets Euro 5 and 6 regulations.
Technical Paper
2009-06-15
Ludivine Pidol, Bertrand Lecointe, Nicolas Jeuland
Facing more and more stringent regulations, new solutions are developed to decrease pollutant emissions. One of them have shown promising and relevant results. It consists of the use of ethanol as a blending component for diesel fuel Nevertheless, the addition of ethanol to Diesel fuel affects some key properties such as the flash point. Consequently, Diesel blends containing ethanol become highly flammable at a temperature around ambient temperature. This study proposes to improve the formulation of ethanol based diesel fuel in order to avoid flash point drawbacks. First, a focus on physical and chemical properties is done for ethanol based diesel fuels with and without flash point improvement. Second, blends are tested on a passenger car diesel engine, under a wide operating range conditions from low load low speed up to maximum power. The main advantage of the ethanol based fuels generate low smoke level, that allows using higher EGR rate, thus leading to an important NOx decrease.
Technical Paper
2009-06-15
Jean-Marc Zaccardi, Alexandre Pagot, Franck Vangraefschepe, Caroline Dognin, Smail Mokhtari
The combination of air charging and downsizing is known to be an efficient solution to reduce CO2 emissions of modern gasoline engines. The decrease of the cubic capacity and the increase of the specific performance help to reduce the fuel consumption by limiting pumping and friction losses and even the losses of energy by heat transfer. Investigations have been conducted on a highly downsized SI engine to confirm if a strong decrease of the displacement (50 %) was still interesting regarding the fuel consumption reduction and if other ways were possible to improve further more its efficiency. The first aim of our work was to identify the optimal design (bore, stroke, displacement, …) that could maximize the consumption reduction potential at part load but also improve the engine's behaviour at very high load (up to 3.0 MPa IMEP from 1000 rpm). In order to do that, four engine configurations with different strokes and bores have been tested and compared. Their performance and consumption levels have then been incorporated into a larger database with other engines to compute models that can forecast the fuel consumption and emissions of an engine on a specified point.
Technical Paper
2009-06-15
Jean-Marc Zaccardi, Laurent Duval, Alexandre Pagot
Recent developments on highly downsized spark ignition engines have been focused on knocking behaviour improvement and the most advanced technologies combination can face up to 2.5 MPa IMEP while maintaining acceptable fuel consumption. Unfortunately, knocking is not the only limit that strongly downsized engines have to confront. The improvement of low-end torque is limited by another abnormal combustion which appears as a random pre-ignition. This violent phenomenon which emits a sharp metallic noise is unacceptable even on modern supercharged gasoline engines because of the great pressure rise that it causes in the cylinder (up to 20 MPa). The phases of this abnormal combustion have been analysed and a global mechanism has been identified consisting of a local ignition before the spark, followed by a propagating phase and ended by a massive auto-ignition. This last step finally causes a steep pressure rise and pressure oscillations. One of our objectives was to evaluate the sensitivity of an engine to pre-ignition regarding its design and settings.
Technical Paper
2009-06-15
Alexandre Chasse, Philippe Pognant-Gros, Antonio Sciarretta
Abstract The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Technical Paper
2009-06-15
Arnaud Frobert, Yann Creff, Stéphane Raux, Christophe Charial, Arnaud Audouin, Laurent Gagnepain
A comprehensive experimental approach has been developed for a Fe-ZSM5 micro-porous catalyst, through a collaborative project between IFP, PSA Peugeot-Citroën and the French Environment and Energy Management Agency (ADEME). Tests have first been conducted on a synthetic gas bench and yielded estimated values for the amount of NH3 stored on a catalyst sample. These data have further been compared to those obtained from an engine test bench, in running conditions representative of the entire operating range of the engine. 15 operating points have been chosen, considering the air mass flow and the exhaust temperature, and tested with different NH3/NOx ratios. Steady-state as well as transient conditions have been studied, showing the influence of three main parameters on the reductant storage characteristics: exhaust temperature, NO2/NOx ratio, and air mass flow. It has also been shown that the reducing agent release strongly depends on the current exhaust conditions, but also on the way it has been stored.
Technical Paper
2009-06-15
Julian T. Kashdan, Patricia Anselmi, Bruno Walter
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies. Furthermore, at low loads, the low combustion temperatures lead to high levels of unburned hydrocarbon (HC) and carbon monoxide (CO) emissions.
Technical Paper
2009-06-15
Julian T. Kashdan, Benoist Thirouard
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study. The objective was to investigate the principal differences between optical and all-metal engines and how these differences ultimately affect mixing, combustion and emissions formation processes.
Viewing 1 to 30 of 95

Filter

  • Range:
    to:
  • Year: