Viewing 1 to 4 of 4
Technical Paper
Keiya Nishida, Takeru Matsuo, Kang Yang, Youichi Ogata, Daisuke Shimo
The injection amount per stage in the multiple injection strategy is smaller than the conventional single-stage injection. The research of the spray mixture formation and the combustion characteristics with a small injection amount is being meaningful. In this study, the effect of the injection amount (0.27mg, 0.89mg, 2.97mg) under 100MPa injection pressure and the effect of injection pressure (100MPa, 170MPa) under different injection amount (0.27mg, 2.97mg) on the spray and mixture formation characteristics were studied based on the vapor and liquid phase concentration distributions in the fuel spray by using the tracer LAS technique. In order to satisfy the requirements for the LAS test fuel, the tracer LAS technique was adopted. The spray was injected used a single-hole nozzle with a diameter 0.133mm into the high-pressure and high-temperature constant volume vessel.
Journal Article
Keiya Nishida, Kuichun LI, Takeru Matsuo, Daisuke Shimo, Wu Zhang
Abstract Spray characteristics under very small injection amount injected by the hole-type nozzle for a D.I. Diesel engine were investigated using the spray test rig consisting a high-pressure and high-temperature constant volume vessel with optical accesses and a common rail injection system. The Laser Absorption Scattering (LAS) technique was used to visualize the liquid and vapor phase distributions in the evaporating spray. In the very small injection amount condition of the evaporating and free (no wall impingement) spray, the both spray tip penetration and spray angle are larger than those of the non-evaporating free spray. This tendency contradicts the previous observation of the diesel spray with large injection amount and the quasi steady state momentum theory. In the case of the spray impinging on a 2-dimensional piston cavity wall, the spray tip penetration of the evaporating spray is larger than that of the non-evaporating spray.
Technical Paper
Yoshihiro Okada, Takahide Nouzawa, Satoshi Okamoto, Takuya Fujita, Takashi Kamioka, Makoto Tsubokura
Relationships between vehicle's high speed stability during a steering action and following aerodynamic coefficients have already been reported in the past: coefficients for time-averaged aerodynamic lift, yawing moment, side force and rolling moment. In terms of the relationships, however, we have occasionally experienced different high speed stability during steering input even with identical suspension property and almost the same aerodynamic coefficients. A vehicle during high speed cornering shows complex behavior due to unsteady air flow around the vehicle and unintentional steering input from a driver. So it is supposed that the behavior is too complex to be fully described only with those aerodynamic coefficients. Through on-road test [1] and CFD analysis [2,3,4], we have studied unsteady aerodynamic characteristics around a vehicle for pitching motion during straight-line high speed driving.
Technical Paper
Makoto Tsubokura, See Yuan Cheng, Takuji Nakashima, Yoshihiro Okada, Takahide Nouzawa
We investigate the pitching stability characteristics of sedan-type vehicles using large-eddy simulation (LES) technique. Pitching oscillation is a commonly encountered phenomenon when a vehicle is running on a road. Attributed to the change in a vehicle's position during pitching, the flow field around it is altered accordingly. This causes a change in aerodynamic forces and moments exerted on the vehicle. The resulting vehicle's response is complex and assumed to be unsteady, which is too complicated to be interpreted in a conventional wind tunnel or using a numerical method that relies on the steady state solution. Hence, we developed an LES method for solving unsteady aerodynamic forces and moments acting on a vehicle during pitching. The pitching motion of a vehicle during LES was produced by using the arbitrary Lagrangian-Eulerian technique. We compared two simplified vehicle models representing actual sedan-type vehicles with different pitching stability characteristics.
Viewing 1 to 4 of 4