Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 85
Technical Paper
2014-10-13
Akira Kikusato, Kazuya Kogo, Beini Zhou, Kusaka Jin, Yasuhiro Daisho, Kiyotaka Sato, Hidefumi Fujimoto, Hiroshi Terashima, Youhi Morii
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Diesel engines are characterized by high fuel economy while they are strongly required to reduce emissions. Multi-dimensional simulation with detailed chemical reaction calculations will be more promising and useful to understand the combustion processes, and precisely predict emission characteristics for the essential purpose of meeting future stringent fuel economy and emission regulations. On the other hand, CPU load for detailed chemical reaction calculations is becoming higher because they simultaneously solve the ordinary differential equations in terms of various chemical species derived from the rate of elementary reactions. In fact, series calculations of detailed chemical reactions by using DVODE account for more than 99% of the whole calculation time, which includes the time for solving fuel injection, transport equation and so on.
Technical Paper
2014-10-13
Beini Zhou, Akira Kikusato, Kusaka Jin, Yasuhiro Daisho, Kiyotaka Sato, Hidefumi Fujimoto
Diesel engines for automobiles are required to simultaneously comply with the increasingly more stringent emission regulations and fuel economy standards. As a very useful tool, Computational Fluid Dynamics (CFD) has become an effective tool to develop higher efficiency and lower emission diesel engine combustion systems. Direct Numerical Simulation (DNS) is one of the most precise methods of all CFD codes. Although DNS can describe organized vortex structures in the turbulent flows, it requires excessive cost and computation time to predict diesel spray characteristics. Thus, so far DNS is not a practical method without adopting turbulent modeling for practical applications. In recent years, Large Eddy Simulation (LES) of turbulent combustion is becoming more popular in the field of fluid mechanics as a practical DNS replacement to analyze in-cylinder turbulent phenomena. Thus, in this study, the soot formation process in diesel combustion was analyzed by using LES based on one-equation sub-grid turbulent kinetic energy model.
Technical Paper
2014-04-01
Mathieu Picard, Camille Baelden, Tian Tian, Takayuki Nishino, Eiji Arai, Hiroyuki Hidaka
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow. Simulation with housing transverse waviness shows that increasing spring force can lead to an unexpected increase in internal oil consumption.
Technical Paper
2014-04-01
Mathieu Picard, Hiroyuki Hidaka, Tian Tian, Takayuki Nishino, Eiji Arai, Masaki Ohkubo
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Technical Paper
2013-10-15
Kuichun Li, Masaki Ido, Yoichi Ogata, Keiya Nishida, Baolu Shi, Daisuke Shimo
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame. As injection pressure increases to 200 MPa, the gap of soot levels between impinging spray flame and free spray flame becomes unobvious.
Technical Paper
2013-10-14
Olawole Kuti, Keiya Nishida, Mani Sarathy, Jingyu Zhu
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels.
Technical Paper
2012-04-16
Makoto Tsubokura, Yuki Ikawa, Takuji Nakashima, Yoshihiro Okada, Takashi Kamioka, Takahide Nouzawa
Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping. It was found that the vehicle model with a higher sensory rating of high speed stability in the on-road test showed higher aerodynamic damping for the slip-angle change.
Technical Paper
2012-04-16
Shigeki Nitta, Yoshihisa Moriguchi
In previous Life Cycle Assessment (LCA) methods, environmental burden items to be analyzed, prior to a life cycle inventory analysis, were assumed as the main factors of environmental problems regardless of the product category. Next, the life cycle inventory analysis, in which the total amount of environmental burden items emitted during the life cycle of a product was calculated, and an environmental impact assessment were performed. The environmental impact assessment was based on the initially assumed environmental burden items. The process, in other words, was a particular solution based on this assumption. A general solution unconstrained by this assumption was necessary. The purpose of this study was to develop a general method of LCA that did not require such initially assumed environmental burden items, and to make it possible to perform a comprehensive environmental impact assessment and strategically reduce environmental burden of a product. This could be achieved by combining scientific knowledge on environmental burden items that could cause environmental problems, database on the environmental burden items emitted during the material production and product assembly, and sales portfolio of the product.
Technical Paper
2012-04-16
Masayoshi Horiue, Ohtsubo tomonori, Hiroshi Okiyama, Yoshiyuki Tanaka, Toshio Tsuji
Lateral distance from the center of a driver's seating position to the gas and brake pedals is one of the main design factors that relates to the ease of stepping on the pedals from one and the other. It is important to keep a certain distance between the pedals to prevent erroneous operations or to reduce the driver's anxiety. In this paper, we explain that the distance between the pedals is affected by the driver's seating height. In other words, if the driver sits lower, the accuracy of stepping on the pedals from the gas pedal to the brake pedal will increase compared to the higher seating position. In addition, we found out that providing auxiliary parts for the leg support enhances the accuracy of the pedal operations.
Technical Paper
2011-10-06
Harumi Sato, Takaki Nakamura, Minoru Inoue, Yoshiichi Ozeki, Tsunehiro Saito
The thermal fluid field in a headlamp based on the real 3D-CAD model is analyzed by a mesh free method. The conducted method is a new CFD (Computational Fluid Dynamics) solver based on the couples of the points whose density is controlled scattered in the analysis space including the boundaries, which leads to much reduce the hand-working time in the deformation of the 3D-CAD model for the mesh generation. This paper focuses on the steady state airflow field in a headlamp under the conditions of natural ventilation including the effect of the buoyancy and the heat generation of the lamp surface for the demonstration of the conducted method without not only the deformation of the real 3D-CAD model but mesh generation. The differences of the pressure outlet conditions and heat generation of the headlamp on the amount of the ventilation are also experimented. As a result, it is found that the conducted method is recognized as a powerful tool which can analyze the thermal fluid field in the headlamp based on the real 3D-CAD model directly with simple operation.
Technical Paper
2011-10-06
Minoru Inoue, Hiroaki Masuoka, Takaki Nakamura, Yoshiichi Ozeki, Tsunehiro Saito
The thermal fluid field in a vehicle cabin model is analyzed by the mesh free method as well as mentioned in the Part 1. This paper focuses on the steady state indoor climate in the vehicle cabin including the effect of the buoyancy, the heat generation of the driver and heat conduction through the vehicle body surface under the maximum air-cooling condition soaked in a climate chamber in the summer condition for the demonstration of the mesh free method without not only the deformation of the 3D-CAD model but mesh generation. The solar radiation distribution and heat generation through the exhaust pipe from the engine room are simply included in the analysis. Simulated results are compared with experiments in the conditions of both moving and idling states. As a result, no significant difference in air temperature between simulation and experiments can be obtained in both conditions. It is found the conducted method is recognized as a powerful tool which can analyze the indoor climate in the vehicle cabin based on the 3D-CAD model directly.
Technical Paper
2011-08-30
Kstsuyuki Ohsawa, Satoru Kiyama, Yohei Nakamura, Yoshitaka Ochiai, Syun Nakagawa, Tetsuya Oda, Yuma Miyauchi
Understanding of the oil film formation mechanism around a piston skirt is very important to reduce the friction loss at piston skirt. We have investigated lubricant oil film behavior around piston skirt which is affected by piston slap under motoring condition. In this study, a cylinder liner of a commercial engine is displaced with a quartz cylinder. Photographic observations of oil film behavior between the cylinder liner and the piston skirt were performed with two kinds of methods; direct monochromatic photography and LIF (Laser Induced Fluorescence) image using a high speed camera. The oil film distributions were determined from oil boundary observed by the direct photography, and oil film thickness was estimated from the LIF intensity. Differences of the oil film distributions and the oil film thickness depending on piston shapes were investigated for four types of pistons. It was concluded that V-cut ditch grooved at the top of the piston skirt affected inclined motion of a piston and barrel profile affected both inclined motion and eccentric motion of a piston to thrust side.
Technical Paper
2011-08-30
Masahisa Yamakawa, Takashi Youso, Tatsuya Fujikawa, Toshiaki Nishimoto, Yoshitaka Wada, Kiyotaka Sato, Hideaki Yokohata
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper
2011-08-30
Hidefumi Fujimoto, Hiroyuki Yamamoto, Masahiko Fujimoto, Hiroyuki Yamashita
Improvement of indicated thermal efficiency of internal combustion engines is required, and increasing the compression ratio is an effective solution. In this study, using a CAE analysis coupling a 0-dimensional combustion analysis and a 1-dimensional heat conduction analysis, the influence of compression ratio on indicated thermal efficiency and combustion was investigated. As a result, it was found that there was an optimal compression ratio that gave the best indicated thermal efficiency, because the increase of cooling loss caused by high compression was bigger than the increase of theoretical indicated thermal efficiency in some cases. Next, the influence of cooling loss reduction on the optimal compression ratio was investigated. It was found that indicated thermal efficiency improved by reducing cooling loss, because the compression ratio which made the best indicated thermal efficiency was shifted to higher compression ratio.
Article
2011-05-23
Ford's passenger-vehicle joint venture in China, Changan Ford Mazda Automobile Ltd. (CFMA), on May 19 signed a memorandum of understanding with the Chongqing municipal government to build a transmission plant in the inland city.
Technical Paper
2011-04-12
Shigeki Nitta, Yoshihisa Moriguchi
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040. The majority of data on production of materials were taken from GaBi4 database.
Technical Paper
2010-04-12
Yoshiichi Ozeki, Hideaki Nagano, Hiroki Takahashi, Minoru Inoue, Shinsuke Kato, Shin Kobayashi, Eiji Nomura
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles. CFD simulations were also performed on trial and good agreement was shown as a result.
Technical Paper
2007-04-16
T. Gendo, K. Nishiguchi, M. Asakawa, S. Tanioka
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper
2003-10-27
Ichiro Ino, Wataru Ohnishi
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper
2003-05-19
Shinji Fujii, Masanobu Fukushima, Akiko Abe, Shigeru Ogawa, Hideharu Fujita, Takayuki Sunakawa, Yukiko Tanaka
A structure which effectively improves compatibility in a vehicle-to-vehicle frontal impact has been considered focusing on sub-frame structure that disperses applied force with multiple load paths. Evolved sub-frame structure has been studied by CAE with RADIOSS to search the possibility to reduce aggressivity and to improve self-protection at the same time. Vehicle models used for this compatibility study were a large saloon car with sub-frame and a small family car without sub-frame. The large saloon car had three different front structures: original, forward-extended sub-frame, and original with 25%-stiffness reduced structures. The types of collision contained four different crash modes in a combination of lateral overlap rate difference and side member height difference. With these three different structures in four different crash modes, crash simulations were conducted to evaluate aggressivity and self-protection based on front structure and compartment deformations, energy absorption amount, and Average Height of Force (AHOF).
Technical Paper
2002-10-21
Jeekuen Lee, Keiya NISHIDA, Masahisa YAMAKAWA
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray. Therefore, the status of the flow field right before the 2nd spray injection, including the ambient air motion formed by the 1st spray, should be considered in the development process of the 2nd spray.
Technical Paper
2002-03-04
Kouji Miyamoto, Hiroyuki Takebayashi, Takahisa Ishihara, Hiroyuki Kido, Koichi Hatamura
In order to study alternate methods of Air Fuel ratio (A/F) perturbation for maximizing three-way catalyst conversion efficiency, two methods for measuring the Oxygen Storage Capacity (OSC) of Catalyst were developed on an engine test bench. The first is to measure just the break-through Perturbing Oxygen Quantity (POQ, which is defined as the product of A/F amplitude, perturbation period and gas flow), and the second is to measure the response delay of the rear A/F sensor, which has been improved to be very similar to the former. Then, the OSC values of many catalysts were investigated with different perturbation parameters. The results show that OSC would not be affected by amplitude, period of perturbation and gas flow, and that the best conversion efficiency is obtained when the value of POQ is about 1/2 of the value for OSC. These results suggest that the best way to control perturbation is to keep POQ at 1/2 of OSC by setting perturbation parameters. Then optimized perturbation control algorithm has been developed and satisfactory conversion efficiency is realized.
Technical Paper
2001-03-05
Kyoso Ishida, Mitsugi Fukahori, Katsunori Hanakawa, Hideaki Tanaka, Kenji Matsuda
A technique to strengthen body frame with a polymeric structural foam has been developed with benefits of reducing vehicle weight and improving drivability and fuel economy. The idea of this new technology was evolved from the concept that body frame strength will increase drastically if the body frames are prevented from folding on collision. The energy of a collision impact would be effectively absorbed if weak portions of body frames are reinforced by a high strength structural foam. The new technology composed of the high strength structural foam and a light-weight frame structure with partial foam filling is reported here.
Technical Paper
2000-06-12
Ichiro Kitayama, Taeko Shimizu, Keiko Matsui, Osamu Takayama, Tsuyoshi Nishijima
Aldehydes are the cause of sick house syndrome or chemical sensitivity and have harmful influences for human beings. In the cabin of vehicle, aldehydes which are included in the volatilization gas from the interior materials, DE emission gas in intake air, cigarette smoke and so on spoil the comfortableness. Active carbon, which has been used as an adsorbent, shows an excellent removal efficiency for most of the gas components by physical adsorption. But for aldehydes, it has difficulty because aldehydes are hard to be adsorbed physically. We have developed new aldehydes adsorbent undergoing addition reaction with gaseous aldehydes on its surface. Aldehydes capture material (ACM) make use of the chemical reaction using a resorcin as a reagent and an H-type zeolite as a water-containing support, and active hydrogen is used as a catalyst to promote the reaction. In addition, we have applied ACM to cabin air filter (CAF) of vehicle. Combining ACM with active carbon, we have developed CAF with aldehydes capture function and realized the best cabin air quality.
Technical Paper
2000-06-12
Takashi Ebisugi, Minoru Inoue, Gozo Watanabe
For a crash analysis using FEM with respect to a structure that is composed of thin plates, we developed a new structure study method (plastic strain equalization method). This method defines the optimality criteria as in the linear analysis of a fully stressed design and indirectly finds an optimal solution. We assume that a structure with both a lightweight and high collapse load should have sufficient strength corresponding to impact loads in each area. This means that at any area the load value and the strength are balanced at a certain value. For the criteria that the plastic strain value is equal over the whole area, a solution can be found by repeating computations. The design variable is the thickness of shell elements and the computation is iterated until plastic strain values are almost equal. In this paper, a structure with both a lightweight and a high collapse load could be optimized by equalizing the plastic strain value. And the application results by means of this method are described.
Technical Paper
2000-03-06
Shigeki Hiramatsu, Masao Nagamatsu, Shizuo Sumida
An approach of modeling is put forward for automobile product development, and a concept of a functional model is proposed in this paper. Functional models of mechanical, electrical and fluid systems of single degree of freedom are introduced. A wiper system and a power train system are modeled using this approach, and hierarchical functional models of these systems are presented. Simulation result with the hierarchical functional model is compared with test result using an actual power train system of passenger car in order to verify validity and usefulness of the proposed approach.
Technical Paper
1999-03-01
Satoshi Kawai, Yasuhiro Miura, Ryuichi Saito, Koichi Yamamoto, Kazuo Oguri
Today, most widely used synchronizer rings (SNRs) are made of brass (brass SNR). The development of superior SNR to brass SNR has been required for both shift feeling and durability, which are two important requirements for SNRs. Carbon-based friction material (carbon material) is selected to develop superior friction material to brass because carbon material is one of the most durable materials for an application of clutch and brake. Carbon material is placed on the friction surface of SNR (carbon SNR). The structure of carbon material, kinds of raw materials and their combination ratio are selected and optimized. The carbon SNR is confirmed to have higher performance than brass SNR for both shift feeling and durability. At present, our carbon SNRs have been introduced into pickup trucks and SUVs in USA.
Technical Paper
1998-02-23
Hiroshi Uchida, Koji Ueda
A method to inspect the rattle generated in a vehicle cabin has been developed. In the method, the waveform of overall in-cabin noise is analyzed using Wigner distribution, a kind of time-frequency analysis, and the rattle component of the waveform is condensed and separated from the background shake noise. Then the rattle component is classified into three levels, strong, middle and not detected, using a neural network. Fuzzy inference is also used to select normal waveform data. Experimental results show that the correct classification ratio of the method is more than 90%, which equals the ability of skilled inspectors.
Technical Paper
1997-02-24
Nobuyuki Oda, Yukihiro Sugimoto, Takahiro Higuchi, Kouji Minesita
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
Technical Paper
1995-10-01
Masahiko Fujimoto, Keiya Nishida, Hiroyuki Hiroyasu, Michihiko Tabata
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level. The results show that the stratified mixture with center-rich or center-lean pattern was concentrically formed in the central region of the chamber by a jet flow from a tangentially-oriented port.
Viewing 1 to 30 of 85

Filter

  • Range:
    to:
  • Year: