Criteria

Text:
Display:

Results

Viewing 1 to 30 of 198
2013-09-17
Journal Article
2013-01-2092
Jorge Bardina
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
2013-09-17
Journal Article
2013-01-2301
Yao Wang, Shon Grabbe
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
2013-09-17
Technical Paper
2013-01-2331
Jianhua Ge, Brian Lefevre, Michael Roemer, Rodney Martin
This paper presents a novel health monitoring and fault adaptive control architecture for an unmanned hexrotor helicopter. The technologies developed to achieve the described level of robust fault contingency management include; 1.) A Particle Swarm Optimization (PSO) routine for maximizing the “built-in” fault tolerance that the closed loop flight control system affords, 2.) A two-stage Kalman filter scheme for real-time identification of faults that are masked by control system compensation, and 3.) A reconfigurable control allocation method which compensates for large degradations of the six main motor/rotor assemblies. The fault adaptive control system presented herein has strong robustness against small faults without the need for controller reconfiguration, and strong tolerance of large faults through adaptive accommodation of the fault source and severity.
2013-09-17
Technical Paper
2013-01-2333
Ravi Rajamani, Abhinav Saxena, Frank Kramer, Michael Augustin, J.B. Schroeder, Kai Goebel, Ginger Shao, Indranil Roychoudhury, Wei Lin
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a “real-world” example related to designing a landing gear system.
2011-10-18
Technical Paper
2011-01-2521
Gregory J. Follen, Ruben Del Rosario, Richard Wahls, Nateri Madavan
Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets. The NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Project addresses the comprehensive challenge of enabling revolutionary energy-efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies, and the development of unconventional aircraft systems, offer the potential to achieve these improvements.
2011-10-18
Journal Article
2011-01-2680
Yao Wang, Deepak Kulkarni
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
2011-10-18
Journal Article
2011-01-2643
Luis Rabelo, Jorge Bardina, Yanshen Zhu, Jeppie Compton
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV - April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
2011-10-18
Journal Article
2011-01-2716
Jorge Bardina
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
2009-07-12
Technical Paper
2009-01-2425
Bettina L. Beard, Jon Holbrook, Colleen Geven-Sowul, Albert J. Ahumada
The cognitive abilities of some astronauts are affected during spaceflight. We investigated whether a simulated space flight ascent environment, including vibration and 3.8 Gx ascent forces, would result in cognitive deficits detectable by the WinSCAT test battery. Eleven participants were administered the computerized cognitive test battery, a workload rating questionnaire and a subjective state questionnaire before and after a combination of acceleration plus vibration conditions. The acceleration plus vibration exposure resulted in significant self-reports of physical discomfort but did not significantly affect cognitive test battery scores. We discuss ways in which a cognitive assessment tool could be made more sensitive to subtle cognitive changes relevant to astronaut performance.
2009-07-12
Technical Paper
2009-01-2447
Thérèse Huning, Immanuel Barshi, Lacey Schmidt
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. ISS flight controller certification has evolved to include a balanced focus on the development of team performance and technical expertise. The latest challenge the ISS team faces is how to certify an ISS flight controller to the required level of effectiveness in one year. Space Flight Resource Management (SFRM) training, a NASA adapted variant of Crew Resource Management (CRM), is expanding the role of senior flight controllers as mentors to help meet that challenge. This paper explains our mentoring approach and discusses its effectiveness and future applicability in promoting SFRM/CRM skills.
2009-07-12
Technical Paper
2009-01-2586
James Chartres, Brian Koss, Chad Brivkalns, Bruce Webbon, Barbara Romig, Charles Allton
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
2009-07-12
Technical Paper
2009-01-2343
Ric Alba, J. Fisher, J. Hogan, T. Liggett, R. Devaney, T. Fox, J. Rask, N. Hall, E. Anderson, D. Althausen, U. Hegde, J. Mackey. R. May, Z. Yuan
The Flexible Membrane Commode (FMC) is an alternative waste management system designed to address the severe mass restrictions on the Orion vehicle. The concept includes a deployable seat and single use, three layer bags that employ air flow to draw solids away from the body and safely contain them in disposable bags.1 Simulated microgravity testing of the system was performed during two separate parabolic flight campaigns in July and August of 2008. Experimental objectives included verifying the waste fill procedures in reduced gravity, characterizing waste behavior during the filling process, and comparison of the results with model predictions. In addition the operational procedure for bag installation, removal, and sealing were assessed. 2 A difficult operational requirement concerns the delivery of the fecal waste simulant into the upper area of the bag in a manner that faithfully simulates human defecation.
2009-07-12
Technical Paper
2009-01-2344
Z.-G. Yuan, U. Hegde, D. Althausen, J. Mackey, N. Hall, W. Duval, R. Alba, E. Litwiller, J. Hogan, T. Liggett, R. Devaney, T. Fox, J. Rask, K. Wignarajah, J. Fisher
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
2009-07-12
Journal Article
2009-01-2363
Gregory S. Pace, Lance Delzeit, John Fisher
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
2009-07-12
Technical Paper
2009-01-2365
James A. Nabity, Erik W. Andersen, Jeffrey R. Engel, David T. Wickham, John W. Fisher
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
2009-07-12
Technical Paper
2009-01-2418
Harry Jones
NASA is planning to return to the moon and then explore Mars. A permanent base at the south pole of the moon will be the test bed for Mars. At the moon base, two crewmembers are expected to conduct Extravehicular Activity (EVA) six days every week. Current spacesuits are cooled by the sublimation of water ice into vacuum. A single 7 hour EVA near the lunar equator in daylight can expend up to 5 kilograms of water. Because of the high cost of transporting spacesuit cooling water to the moon, the water for one EVA could cost hundreds of thousands of dollars. The lunar south pole and Mars have low surface temperatures that make cooling much easier than at the lunar equator. Alternate cooling methods and staying in cool environments can reduce or eliminate the use of water for spacesuit cooling. If cooling water is not needed, a recycling life support system can provide all the required crew water and oxygen without transporting additional water from Earth.
2009-07-12
Technical Paper
2009-01-2466
Harry Jones
The design and mass cost of a starship and its life support system are investigated. The mission plan for a multigenerationai interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Cost is reduced if a small crew travels slowly and lands with minimal equipment. The first human interstellar colonization voyage will probably travel about 10 light years and last hundreds of years. The required travel velocity is achievable by nuclear propulsion using near future technology. To minimize mission mass, the entire starship would not decelerate at the destination. Only small descent vehicles would land on the destination planet. The most mass efficient colonization program would use colonizing crews of only a few dozen. Highly reliable life support can be achieved by providing selected spares and full replacement systems.
2009-07-12
Technical Paper
2009-01-2482
Harry Jones
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
2009-07-12
Technical Paper
2009-01-2493
Harry Jones
Dynamic modeling and simulation of recycling space life support is necessary to determine processing rates, buffer sizes, controls, and other aspects of systems design. A common approach is to develop an overall inclusive model that reflects nominal system operation. A full dynamic simulation of space life support represents many system elements in an inclusive model, but it cannot and should not include everything possible. A model is a simplified, partial, mathematical representation of reality. Including unnecessary elements makes the model complex, costly, and confusing. Models are built to help understand a system and to make predictions and decisions about it. The best and most useful models are developed to answer specific important questions. There are many possible questions about life support design and performance. Different questions are best answered by different models. Static spreadsheet analysis is a good starting point.
2009-07-12
Technical Paper
2009-01-2487
W. Duval, N. Hall, J. Mackey, D. Althausen, A. Izadnegahdar, E. Litwiller, M. Flynn
We consider the heat transfer characteristics of an ideal concentric disk used in the Wiped-Film Rotating-Disk (WFRD) evaporator for the Vapor Phase Catalytic Ammonia Removal (VPCAR) water recovery system. A mathematical model is derived to predict the radial temperature distribution and its average over the surface of the disk as a function of system parameters. The model shows self-similarity of the temperature distribution and the existence of a dimensionless parameter S (ratio of heat flux to convection) that can be used as a criterion to optimize the thermal characteristics of the disk in order to approach uniform surface temperature. Comparison of the model to experimental data using global (infrared imager) and local (resistive temperature devices) measurements shows that agreement with the model depends on the ambient condition denoted by the local heat transfer coefficient.
2009-07-12
Technical Paper
2009-01-2513
Julie A. Levri, John A. Hogan, Bruce Deng, Jon Welch, Mike Ho
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
2008-06-29
Journal Article
2008-01-2047
John W. Fisher, John A. Hogan, Lance Delzeit, Travis Liggett, Kanapathipillai Wignarajah, Ric Alba, Eric Litwiller, Gregory Pace, Thomas G. Fox
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
2008-06-29
Journal Article
2008-01-2039
Miwa Hayashi, Ujwala Ravinder, Brent Beutter, Robert S. McCann, Lilly Spirkovska, Fritz Renema
In the cockpit of NASA's next generation spacecraft, most vehicle command will be performed via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than on paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.
2008-06-29
Technical Paper
2008-01-2106
Jessica J. Marquez, Jeffrey W. McCandless, Trent Thrush, William B. Toscano, John Ulman, Thomas E. Diegelman
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
2008-06-29
Technical Paper
2008-01-2108
Mary K. Kaiser, Albert J. Ahumada
Current plans to conduct operations near the lunar poles will result in low sun angles, exacerbating visual problems associated with shadowing and glare. We discuss the perceptual challenges these conditions will present to the human explorers, and consider some possible mitigations and countermeasures.
2008-06-29
Technical Paper
2008-01-2017
Harry Jones
Dynamic simulation of the Lunar Outpost habitat life support was undertaken to investigate the impact of Extravehicular Activity (EVA). The preparatory static analysis and some supporting data are reported in another paper. (Jones, 2008-01-2184) Dynamic simulation is useful in understanding systems interactions, buffer needs, control approaches, and responses to failures and changes. A simulation of the Lunar outpost habitat life support was developed in MATLAB/Simulink™. The simulation is modular and reconfigurable, and the components are reusable to model other physicochemical (P/C) based recycling systems. EVA impacts the Lunar Outpost life support system design by requiring a significant increase in the direct supply mass of oxygen and water and by reducing the net mass savings of using dehydrated food. The mass cost of EVA depends on the amount and difficulty of the EVA scheduled.
2008-06-29
Technical Paper
2008-01-2050
Michael Serio, Erik Kroo, Elizabeth Florczak, Marek Wójtowicz, Kanapathipillai Wignarajah, John Hogan, John Fisher
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
2008-06-29
Journal Article
2008-01-2052
James A. Nabity, Erik W. Andersen, Jeffrey R. Engel, David T. Wickham, John W. Fisher
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. Previously, TDA Research, Inc. demonstrated the potential of a low temperature dry oxidation process using ozone in a small laboratory reactor.
2008-06-29
Technical Paper
2008-01-2097
Bernadette Luna, James Podolske, David Ehresmann, Jeanie Howard, Louis J. Salas, Lila Mulloth, Jay Perry
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
2008-06-29
Technical Paper
2008-01-2095
Lila Mulloth, Mini Varghese, Bernadette Luna, John Hogan, M. Douglas LeVan, Joseph R. Moate
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Viewing 1 to 30 of 198

Filter

  • Range:
    to:
  • Year: