Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Development of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Engineering Development Unit

2004-07-19
2004-01-2495
This paper presents the results of a program to develop the next generation Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a spacecraft water recycling system designed by NASA and constructed by Water Reuse Technology Inc. The technology has been identified by NASA to be the next generation water recycling system [1]. It is designed specifically for a Mars transit vehicle mission. This paper provides a description of the process and an evaluation of the performance of the new system. The equivalent system mass (ESM) is calculated and compared to the existing state-of-the art. A description of the contracting mechanism used to construct the new system is also provided.
Technical Paper

Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

2004-07-19
2004-01-2492
The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability of the nanotubes to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and their effectiveness as catalyst supports for gaseous conversion. A metal impregnated SWNT material has been proposed and synthesized for removing and converting the toxins in the life support system.
Technical Paper

Equivalent Mass (EM), Life Cycle Mass (LCM), and Mass (M) Metrics Compared in Advanced Life Support (ALS) Analysis

2004-07-19
2004-01-2363
The Advanced Life Support (ALS) project uses Equivalent Mass (EM) to report ALS progress and in technology selection. Life Cycle Cost (LCC) is much more widely used. We develop a new metric, Life Cycle Mass (LCM), from EM and a mass-based LCC model. EM, LCM and Mass (M) alone are compared for technology ranking and progress reporting. These metrics are usually highly correlated and typically produce similar technology rankings and ALS progress metrics. Since M is much simpler than EM or LCM, ALS analysis could use M (Mass) alone for initial technology ranking and for ALS metric reporting.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

A Hybrid Pyrolysis / Oxidation System for Solid Waste Resource Recovery

2004-07-19
2004-01-2380
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid, and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process. The advantages of pyrolysis are: insensitivity to feedstock composition, no oxygen consumption, and batch operation. The main advantage of oxidation is the simplicity and consistency of the product stream. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (estimated at 10-40%) and system complexity.
Technical Paper

Lyophilization for Water Recovery II, Model Validation

2004-07-19
2004-01-2377
This paper presents results of research on a solid waste dryer, based of the process of lyophilization, which recovers water and stabilizes solid waste. A lyophilizer has been developed and tested that uses thermoelectric heat pumps (TECs) to recycle heat during drying. The properties of TECs facilitate direct measurement of heat flow rates, and heat flow data are used to evaluate a heat and mass transfer model of the thermoelectric lyophilizer. Data are consistent with the theoretical model in most respects. Practical problems such as insulation and vacuum maintenance are minor in this system. However, the model’s assumption of a uniformly retreating ice layer during drying is valid only for the first 30% of water removed. Beyond this point, a shrinking core or lens model is more appropriate. Heat transfer to the shrinking core surrounded by dried material is slow.
Technical Paper

System-Level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

2004-07-19
2004-01-2364
To ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of makeup water. For a Mars transit mission, the primary sources of makeup water will likely involve water contained in shipped tanks and in prepackaged food. As mission length increases, it becomes more cost effective to increase system water closure (recovery and generation) than to launch adequate amounts of contained water. This trend may encourage designers to specify increased water recovery in lieu of higher food moisture content. However, food palatability requirements will likely declare that prepackaged foods have a minimum hydration (averaged over all food types). The food hydration requirement may even increase with mission duration. However, availability requirements for specific emergency scenarios may declare that determined quantities of water be provided in tanks, rather than as moisture in food.
Technical Paper

Development of Decision Support Capability in ALS

2004-07-19
2004-01-2577
The ALS Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Compounding the problem is the slow rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the slow rate at which new configurations are developed. This limits the search space and potentially gives the impression of a stalled research and development program. Without significant increases in the state of the art of ALS technology, the ALS goals involving the Metric may remain elusive. A paper previously presented at his meeting entitled, “Managing to the metric: An approach to optimizing life support costs.” A conclusion of that paper was that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions.
Technical Paper

An Extensible Information Grid for Risk Management

2003-09-08
2003-01-3067
This paper describes recent work on developing an extensible information grid for risk management at NASA — a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management — a closed-loop iterative process for explicit risk management, program/project management — a proactive process that includes risk management, and mishap management — a feedback loop for learning from historical risks that ‘escaped’ other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, ‘schema-less’ mapping of XML, and secure server-mediated communication using standard protocols.
Technical Paper

Compressing Aviation Data in XML Format

2003-09-08
2003-01-3011
Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. Manual discovery of optimal setting can require an engineer to experiment for weeks.
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

NASA's Aviation System Monitoring and Modeling Project

2003-09-08
2003-01-2975
Within NASA's Aviation Safety Program, the Aviation System Monitoring and Modeling (ASMM) Project addresses the need to provide decision makers with the tools to identify and evaluate predisposing conditions that could lead to accidents. This Project is developing a set of automated tools to facilitate efficient, comprehensive, and accurate analyses of data collected in large, heterogeneous databases throughout the National Aviation System. This report is a brief overview of the ASMM Project as an introduction to the rest of the presentations in this session on one of its key elements---the Performance Data Analysis and Reporting System (PDARS).
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Investigating the Partitioning of Inorganic Elements Consumed by Humans between the Various Fractions of Human Wastes - An Alternative Approach

2003-07-07
2003-01-2371
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes.
Technical Paper

Development of Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization and Analysis of Desiccating Membrane

2003-07-07
2003-01-2367
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane-integrated, adsorption processor for CO2 removal and compression in closed-loop air revitalization systems. The membrane module removes water from the feed, passing it directly into the processor's exhaust stream; it replaces the desiccant beds in the current four-bed molecular sieve system, which must be thermally regenerated. Moreover, in the new processor, CO2 is removed and compressed in a single two-stage unit. This processor will use much less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems.
Technical Paper

Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

2003-07-07
2003-01-2368
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube’s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube’s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT’s.
Technical Paper

Design Rules for Space Life Support Systems

2003-07-07
2003-01-2356
This paper describes engineering rules of thumb for life support system design. One general design rule is that the longer the mission, the more the life support system should use regenerable technologies and recycling. A more specific rule is that, if plants supply more than about half the food, the plants will provide all the oxygen needed by the crew. There are many such design rules that can help in planning the analysis of life support systems or in assessing design concepts. These rules typically describe the results of steady state, “back of the envelope,” trade-off calculations. They are useful in suggesting plausible candidate life support system designs or approaches. Life support system engineers should consider the basic design rules and make quick steady state calculations as a guide before doing detailed design.
Technical Paper

Component-based Control System for the Rotating-Disk Analytical System (R-DAS)

2003-07-07
2003-01-2529
The Rotating Disk Analytical System (R-DAS) is an in-situ, bio-analytical technology, which utilizes a micro-fluidic disk with similar form factor as an audio compact disc to enhance and augment microgravity-based cellular and molecular biology research. The current micro-fluidic assay performs live cell/dead cell analysis using fluorescent microscopy. Image acquisition and analysis are performed for each of the selected microscope slide windows. All images are stored for later download and possible further post analysis. The flight version of the R-DAS will occupy a double mid-deck shuttle locker or one quarter of an ISS rack. The control system for the R-DAS consists of a set of interactive software components. These components interact with one another to control disk rotation, vertical and horizontal stage motion, sample incubation, image acquisition and analysis, and human interface.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

The Effect of Mission Location on Mission Costs and Equivalent System Mass

2003-07-07
2003-01-2633
Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface.
X