Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 510
Technical Paper
2014-10-13
Kohei Yoshida, Yusuke Nozaki, Toshihiro Mori, Yuki Bisaiji, Yuki haba, Kazuhiro umemoto, Takao Fukuma
To fulfill upcoming stringent worldwide CO2 emission target, engine thermal efficiency should further be increased and diesel engine is one of the promising solutions. Nevertheless to ensure good air quality, NOx emission should be reduced using a specific catalyst. In order to reduce NOx from a diesel engine operation in lean condition, Urea-Selective Catalyst Reduction (SCR) or NOx Storage and Reduction (NSR) systems have been widely adopted in the European market. The NSR system is most efficient for small/mid vehicle size since it requires less packaging space and it is less expensive than a urea SCR system. However, its NOx reduction performance is currently limited under high temperature and high space velocity conditions since the NOx storage ability as nitrate is insufficient under such conditions. For future NSR usage, it is therefore necessary to improve the NOx reduction performance of NSR. DiAir (Diesel NOx After-treatment by Adsorbed Intermediate Reductants) has been introduced as one of the measures to improve NOx conversion performance under high space velocity (SV) and temperature conditions.
Technical Paper
2014-10-13
Yuichiro Kajiki, Katsuhiro Ashihara, Hiroki Takata, Akihiro Honda
Engine friction reduction is an effective means to improve fuel consumption. Fluid friction reduction of main bearing is examined for engine friction reduction in cold condition. As one of the examination, it was focused on early-warm up of lubricating oil. Early-warm up of lubricating oil is generated by reduction of heat radiation on the bearing surface. Heat radiation on the bearing surface is reduced by reduction of oil leakage. Therefore, reduction of oil leakage is an effective means for the acceleration of temperature rise of lubricating oil. The oil leakage from bearing edge is investigated by mass conserving hydrodynamic lubrication analysis. As a result, it is clarified that the suction of lubricating oil from outside of bearing edge is generated at downstream domain in the rotating direction on the lower bearing. This suction function of lubricating oil is generated by negative pressure of lubricating oil on bearing surface. The negative pressure is generated by clearance shape between crankshaft and bearing surface which gradually spread in rotational direction.
Technical Paper
2014-10-13
Mitsuaki Ohtomo, Hiroshi Miyagawa, Makoto Koike, Nozomi Sasaki, Koichi Nakata
This paper presents the effects of a lubricant oil droplet on start of combustion of fuel-air mixture. Lubricant oil is thought to be a major source of stochastic pre-ignitions in some form in highly boosted spark ignition engines. However, the phenomena has not yet been fully understood because an unpredictable occurrences as well as complexity of mixture and thermodynamical conditions in engine cylinder chamber such as temperature distribution, residual gas and deposit makes its analysis hard. In this study, a suspended isolate oil droplet in a combustion cylinder was picked up as a contaminant to simplify the phenomena. The condition that a single oil droplet ignites earlier than fuel-air mixture was investigated. Test was conducted by using a rapid compression and expansion machine so that the mixture condition in cylinder is controlled with accuracy. Droplet diameter, droplet temperature and fuel-air mixture condition such as mixture strength or octane number of fuel were chosen as parameters.
Technical Paper
2014-04-01
Gen Shibata, Hirooki Ushijima, Hideyuki Ogawa, Yushi Shibaike
Abstract When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise. The parameters investigated in the engine tests were the maximum rate of pressure rise, intake pressure by the supercharger, intake oxygen content by EGR, and the fuel injection timing, in all experiments the engine speed was maintained at 1600 rpm.
Technical Paper
2014-04-01
Hisao Hayashi, Masahiko Ishii
Abstract Waterborne 3-wet paint systems have been developed to reduce volatile organic compounds (VOCs) and CO2 on vehicle painting lines. However, only a small number of vehicles have adopted this system due to limitations in appearance quality (smoothness and gloss). Therefore, a waterborne 3-wet paint system with appearance quality equivalent to a conventional 3-coat 2-bake (3C2B) paint system is under development. This paper describes research for improving appearance quality. After analyzing the unevenness surface formation mechanism of a paint film, this was achieved by adopting base resins with a low glass transition point (Tg) to promote leveling, and reducing the melamine content of the paint to minimize contraction during baking.
Technical Paper
2014-04-01
Takahiro Adachi, Takashi Yonekawa, Yoshitaka Fuwamoto, Shoji Ito, Katsuhiko Iwazaki, Sueharu Nagiri
Abstract The driving simulator (DS) developed by Toyota Motor Corporation simulates acceleration using translational (XY direction) and tilting motions. However, the driver of the DS may perceive a feeling of rotation generated by the tilting motion, which is not generated in an actual vehicle. If the driver perceives rotation, a vestibulo-ocular reflex (VOR) is generated that results in an unnecessary correction in the driver's gaze. This generates a conflict between the vestibular and visual sensations of the driver and causes motion sickness. Although such motion sickness can be alleviated by reducing the tilting motion of the DS, this has the effect of increasing the amount of XY motion, which has a limited range. Therefore, it is desirable to limit the reduction in the tilting motion of the DS to the specific timing and amount required to alleviate motion sickness. However, the timing and extent of the VOR has yet to be accurately identified. This paper describes how the eye movement of the driver was used to measure the positional deviation between the gaze of the driver and images caused by unnecessary VOR.
Technical Paper
2014-04-01
Takashi Kubokura, Takahiro Uno, Nic Evans, Hiroshi Kuroda, Fuminori Shindo, Satoshi Nagahama
Abstract As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions. In order to decrease airflow volume by front grille opening area reduction, radiator efficiency improvement was investigated.
Technical Paper
2014-04-01
Akihito Yamamoto, Haruhiko Sugai, Ryo Kanda, Shuuichi Buma
Abstract This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Technical Paper
2014-04-01
Edgar Yoshio Morales Teraoka, Shin Tanaka, Tsutomu Mochida
Abstract We develop a simulation tool which reproduces lane departure crashes for the purpose of estimating potential benefits of Lane Departure Warning (LDW) systems in the American traffic environment. Tools that allow a fast evaluation of active safety systems are useful to make better systems, more effective in the real world; however accuracy of the results is always an issue. Our proposed approach is based on developing a simulation tool that reproduces lane departure crashes, then adding the effect of the LDW to compare the cases with and without the safety system, and finally comparing the results of different settings of the safety system. Here, the accurate reproduction of the relevant crashes determines the reliability of the results. In this paper, we present the reproduction of the lane departure crashes occurred in American roads in one year, by using data distributions obtained from retrospective crash databases. We analyze data from NASS/GES1 and NASS/CDS2 to obtain the characteristics of lane departure accidents in the USA.
Technical Paper
2014-04-01
Masahiro Tawara, Andrew Sata, Naoyuki Sakamoto, Toshiya Oishi, Shun Minaki, Motonori Kimura, Koshiro Kosaka
Abstract Toyota Motor Corporation developed a continuously variable transmission (CVT), unit K313, to satisfy the rising demand for improved fuel economy. This transmission was installed in the North American market Corolla for the 2014 model year. In this market, the driveability demands for automatic transmissions (AT) are very high. Additionally, the market is dominated by conventional AT with fixed gear ratios, leaving CVTs in the minority. In order to increase the volume and acceptance of CVTs in North America, excellent driveability had to be ensured. The key driveability advantage of CVTs is the ability to change gear ratio continuously without engaging or disengaging clutches. This allows for smooth driving without any shocks or gaps in drive force; however, it can also feel strange to drivers of conventional AT. To achieve the required driveability performance for the CVT in North America, the following technologies were introduced: A new drive force design method was developed to better utilize the continuously variable gear ratio, which results in better, more proportional acceleration feelings for the driver.
Technical Paper
2014-04-01
Kenji Tadakuma, Takashi Sugiyama, Kazuhiro Maeda, Masashi Iyota, Masahiro Ohta, Yoshinao Komatsu
A new wind tunnel was developed and adopted by Toyota Motor Corporation in March 2013. This wind tunnel is equipped with a 5-belt rolling road system with a platform balance that enables the flow simulation under the floor and around the tires in on-road conditions. It also minimizes the characteristic pulsation that occurs in wind tunnels to enable the evaluation of unsteady aerodynamic performance aspects. This paper describes the technology developed for this new wind tunnel and its performance verification results. In addition, after verifying the stand-alone performance of the wind tunnel, a vehicle was placed in the tunnel to verify the utility of the wind tunnel performance. Tests simulated flow fields around the vehicle in on-road conditions and confirmed that the wind tunnel is capable of evaluating unsteady flows.
Technical Paper
2014-04-01
Toshihiro Aoyama, Hideaki Takahara, Shinya Kuwabara, Hideki Miyata, Makoto Nakayashiki, Shinji Kasuga
Abstract In response to global demands for environmental conservation, the automotive industry is placing greater focus on the development of fuel-efficient technologies to help reduce global CO2 emissions. With the aim of simultaneously improving fuel economy and driveability, TOYOTA has developed a new continuously variable transmission (CVT) vehicles in North America equipped with a 1.8-liter engine [1]. This new CVT features various technologies for improving fuel economy, including: the world's first coaxial 2-discharge port oil pump system, wider ratio coverage, a flex start system, low-viscosity CVT fluid, and a higher final gear ratio. This paper outlines the configuration, characteristics, performance, and new technologies of this CVT.
Technical Paper
2014-04-01
Yoshinori Otsuki, Kenji Takeda, Kazuhiko Haruta, Nobuhisa Mori
Abstract The particle number (PN) emission regulation has been implemented since 2011 in Europe. PN measurement procedure defined in ECE regulation No. 83 requires detecting only solid particles by eliminating volatile particles, the concentrations of which are highly influenced by dilution conditions, using a volatile particle remover (VPR). To measure PN concentration after the VPR, a particle number counter (PNC) which has detection threshold at a particle size of 23 nm is used, because most solid particles generated by automotive engines are considered to be larger than 23 nm. On the other hand, several studies have reported the existence of solid and volatile particles smaller than 23 nm in engine exhaust. This paper describes investigation into a measurement method for ultrafine PNCs with thresholds of below 23 nm and evaluation of the VPR performance for the particles in this size range. The detection efficiency of an ultrafine PNC was verified by following the ECE regulation procedure.
Technical Paper
2014-04-01
Tetsu Yamada, Shouji Adachi, Koichi Nakata, Takashi Kurauchi, Isao Takagi
From the time the first Hybrid Vehicle (HV) was launched, 17 years have past, and HV vehicles have boosted the global CO2 reduction trend. In order to maximize their merit, many HV engines focused on the best fuel consumption value namely thermal efficiency. This was because HV systems can control the operating area of engine and get merit. However, considering climate change and energy issues, it is important to focus conventional vehicle as well as HV vehicle progress. The Atkinson cycle with a high compression ratio is the typical approach that HV engines use to enhance thermal efficiency. However, the drawback of the high compression ratio is a reduction of engine torque. Thermal efficiency at low load areas is relatively more important with conventional engines than with HV engines and how to overcome these issues is significantly important with conventional engines. The engines which have technologies contributing to lower the vehicle fuel economy are described as ESTEC (Economy with Superior Thermal Efficient Combustion) engines.
Technical Paper
2014-04-01
Randall D. Partridge, Walter Weissman, Takanori Ueda, Yoshihiro Iwashita, Paul Johnson, George Kellogg
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Technical Paper
2014-04-01
Akihiro Honda, Motoichi Murakami, Yuichiro Kimura, Katsuhiro Ashihara, Shinichi Kato, Yuichiro Kajiki
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction. Consequently, the friction reduction effect was less than that predicted by the lubrication calculation.
Technical Paper
2014-04-01
Akihito Hosoi, Atsushi Morita, Naoto Suzuki
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions. The points to be especially noted are: a) in the cool down process, free convection of the gas inside the substrate was based on Darcy's law, b) in the engine operating condition, chemical phenomena and species mass balance in gas phase and catalyst surface was considered.
Technical Paper
2014-04-01
Yoshihiro Okada, Shigeki Miyashita, Yoshihiro Izumi, Yutaka Hayakawa
Abstract This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Technical Paper
2014-04-01
Shinichi Mitani, Susumu Hashimoto, Hiroshi Nomura, Rio Shimizu, Mutsumi Kanda
Abstract The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Technical Paper
2013-10-14
Norihiko Sumi, Satoshi Hirano, Kosuke Fujimoto, Takeshi Nakajima, Yosuke Kudo, Koki Ito
Due to increasing demands for further CO2 reduction and tighter exhaust emissions regulations, automakers are increasingly downsizing turbo-charged diesel engines by raising specific power, or adopting low-pressure loop exhaust gas recirculation (LPL-EGR) systems to improve the EGR rate. However, adopting a higher boost pressure to increase the specific power, or introducing hot exhaust gas before the turbocharger compressor with the LPL-EGR system creates higher gas temperatures in the compressor, which results in soot-containing deposits derived from the engine oil in the compressor. This phenomenon causes significant deterioration of turbocharger efficiency. Therefore, countermeasures such as restricting boost pressure or limiting EGR usage in the operational map are necessary to prevent engine performance deterioration. Increasing the gas temperature in the compressor while preventing deposit formation should enable further improvements in fuel consumption and engine power. This paper investigates the root causes of compressor deposit formation to achieve better engine performance.
Technical Paper
2013-10-14
Satoshi Hirano, Minoru Yamashita, Kosuke Fujimoto, Katsuyoshi Kato
As one of spark ignition (SI) engine solutions to improve fuel economy while maintaining drivability, concept of combing turbocharging and direct injection (DI) fuel injection system with engine down-sizing has increased its application in the market. Abnormal combustion phenomena referred to as Low Speed Pre-Ignition (LSPI) has been recognized as potential restriction to improve low speed engine torque that contributes fuel economy improvement. As reported in the part 1 [1], the study showed that engine oil composition had significant influence on the frequency of LSPI in both preventive and contributory effects. Further investigation was conducted to evaluate engine oil formulation variables and other factors that may have influences on the LSPI, such as engine oil degradation. Engine test that consisted of 2 phases was designed in order to confirm the correlation between LSPI frequency and engine oil degradation. The LSPI frequency measurement phase and engine oil degradation operation phase were conducted alternatively without changing engine oil.
Technical Paper
2013-09-30
Masaaki Nishiwaki, Koji Sorimachi, Ryutaro Misumi
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived. Second, the increase of kinetic energy per 1 cycle in minute vibration is derived, which represents the influence of coupled vibration between out of plane vibration and in-plane vibration in disc and pads with caliper.
Technical Paper
2013-05-13
Hiroshi Sugimura, Masaya Takeda, Masayuki Takei, Hiroo Yamaoka, Takanori Ogata
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model. The voltage of the inverter and converter, and the capacity of the battery are expressed by simple mathematical models.
Technical Paper
2013-04-08
Kenji Itagaki, Hiroaki Takeuchi, Shizuo Abe, Keita Hashimoto
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective. As a result, it is confirmed not only fuel reduction effect in case of real market usage, but also relationship between frequency of charging and fuel reduction effect.
Technical Paper
2013-04-08
Toshihiko Aoki, Hiroshi Kato, Naoki Kato, Morise Masaru
We have developed the world's first 8-speed automatic transmission for transverse FWD/4WD vehicles. The aim of this new automatic transmission was to achieve world-class fuel economy while offering both smooth gear shift and sporty shift feeling suitable for luxury cars. This has been accomplished using wide spread gear ratio, outstanding low drag components and highly efficient hydraulic control system. In addition, we have achieved the compactness similar to current 6-speed automatic transmission by adopting new gear train and compact clutch layout. In this paper, the detail of this automatic transmission is introduced.
Technical Paper
2013-04-08
Eriko Matsumura, Mutsumi Kanda, Fumiaki Hattori, Hiroshi Nomura, Susumu Hashimoto, Kiyotaka Yoshimaru
A new combustion concept for DISI gasoline engine was developed to achieve superior performances of high power and low environmental load. It realizes a high specific power and a good lean combustion performance simultaneously by utilizing a DI spray jet effectively to accelerate the in-cylinder tumble flow. Injection direction and configuration of the DI spray was optimized for intensification of the in-cylinder flow and high mixture homogeneity, a thin fan-shaped spray generated by a slit nozzle was adopted. As a result, combustion was accelerated by increase of in-cylinder turbulence intensity, and homogeneity of air-fuel mixture was improved. In addition, in-cylinder fuel wall wetting, which causes emission of particulate matter (PM) and oil dilution, was drastically reduced by improvement of the fan-shaped spray. Atomization of the modified DI spray was improved by reduction of pressure loss inside the nozzle, utilization of fuel flow turbulence such as cavitation arising in the slit nozzle and raise of the fuel pressure.
Technical Paper
2013-04-08
Yoshihiko Takahashi, Tetsuya Komoguchi, Masato Seki, Nimesh Patel, David Auner, Bruce Campbell
In recent years, a number of different Blind Spot Monitor (BSM) systems have become more and more popular in North American automotive market. The BSM system advises the driver of vehicles travelling in adjacent lanes when these vehicles are also in the driver's outside rearview mirror blind spots. Similarly, when the vehicle is backing up from a parking spot, cross-traffic vehicles can be in the driver's outside mirror blind spots. In this situation, the Rear Cross Traffic Alert (RCTA) system alerts the driver when the driver shifts the vehicle in the reverse gear and there are approaching cross-traffic vehicles. The benefits of RCTA system was presented by [1]. The RCTA alert studied in this paper is given by playing an audible sound and by flashing the outside mirror indicators. The RCTA and BSM systems share the same vehicle sensors and most of their vehicle components. The work presented in this paper researches a new method to properly identify the RCTA alert timing in North America where the rate of front-in parking is higher than other regions and the parking lots are larger than in other regions allowing for larger cross-traffic speeds (typically from 5mph to 18mph).
Technical Paper
2013-04-08
Shigeki Kinomura, Hironobu Kusafuka, Kensuke Kamichi, Tomoya Ono
After the Great East Japan Earthquake on March 11, 2011, Toyota Motor Corporation received considerable public response regarding the role of vehicles in emergencies from a large number of customers. These included comments about the usefulness of the electricity supply system in the Estima Hybrid during the long power outages caused by the earthquake. In response, Toyota decided to install this system in its other hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). This system is capable of supplying power up to 1,500 watts, which means that it can be used to operate virtually every household electrical device. Since the engine starts automatically when the main battery capacity is depleted, a single vehicle can supply the daily power needs of a normal house in Japan for about four days, providing that the battery is fully charged and the fuel tank is full. When adopting the electricity supply system in its PHEVs, Toyota developed a Vehicle Power Connector (VPC) with an outdoor outlet that is capable of drawing power from the vehicle inlet (i.e., the charging inlet).
Technical Paper
2013-04-08
Etsuo Katsuyama
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper
2013-04-08
Masanori Takahashi, Ryoji Isarai, Hiroki Hara
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Viewing 1 to 30 of 510

Filter

  • Range:
    to:
  • Year: