Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 131
2017-03-28
Technical Paper
2017-01-1706
Sandeep Bhattacharya, Daniel Green, Raj Sohmshetty, Ahmet Alpas
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
2017-03-28
Technical Paper
2017-01-0762
Xiaoye Han, Prasad Divekar, Meiping Wang, Ming Zheng, Jimi Tjong, William De Ojeda
This work targets to implement heat release shaping control for improving the ethanol-diesel combustion performance by utilizing a dual-chamber piston bowl design. Unlike the conventional diesel diffusion combustion, new combustion strategies (e.g. dual-fuel combustion) tend to achieve clean combustion by burning a (partially) premixed cylinder charge. However, the rapid heat release from premixed combustion can result in excessive combustion noise and/or high pressure rise rates, which is one of the major barriers preventing these advanced combustion strategies to be fully applied over the entire engine operation map. In order to avoid the fast heat release, an innovative piston bowl design, which physically divides the combustion chamber into a central zone and a peripheral zone near the top dead center, is employed to assist the control of the ethanol-diesel combustion process via heat release shaping.
2017-03-28
Technical Paper
2017-01-0771
Prasad Divekar, Xiaoye Han, Qingyuan Tan, Usman Asad, Tadanori Yanai, Xiang Chen, Jimi Tjong, Ming Zheng
Diesel engines suffer from the oxides of nitrogen (NOx) versus smoke trade-off, wherein the application of EGR for NOx reduction often results in an increase in the smoke emissions. By implementing the ethanol-diesel dual-fuel combustion, the smoke penalty associated with the use of EGR can be suppressed when high ethanol fractions are used. However, at low load levels, the increased carbon monoxide (CO) and unburnt hydrocarbon (HC) emissions contribute to a large reduction in the thermal efficiency in the dual-fuel mode. In this work, tests are conducted on a high compression ratio, single cylinder dual-fuel engine, that incorporates the direct-injection of diesel and port-injection of ethanol. Engine load levels are identified, at which, diesel combustion is more efficient than the dual-fuel combustion while attaining low NOx and smoke emissions.
2017-03-28
Technical Paper
2017-01-0377
Peter Shery, William Altenhof, Ryan Smith, Elmar Beeh, Philipp Strassburger, Thomas Gruenheid
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial cutting and compression modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. Axial cutting of AA6061-T6 extrusions has been shown to be an effective, ductile mode of energy dissipation, yielding a repeatable, nearly constant load/deflection response with a crush force efficiency (CFE) up to 96%. In the present tests, the quasi-static cutting deformation of AZ31B extrusions achieved a respectable CFE of 80%, but revealed a load/deflection response with sharp, minute, rapid fluctuations, indicating an undesirable fracturing failure. Additionally, the average specific energy absorption (SEA) of AZ31B was 11 kJ/kg, which is less than half that seen for AA6061-T6 extrusions of the same geometry (24 kJ/kg).
2017-03-28
Technical Paper
2017-01-0679
Kelvin Xie, Shui Yu, Xiao Yu, Geraint Bryden, Ming Zheng, Mengzhu Liu
In order to meet the future carbon dioxide legislation, advanced clean combustion engines are tending to employ low temperature diluted combustion strategies along with intensified cylinder charge motion. The diluted mixtures are made by means of excess air admission or exhaust gas recirculation. A slower combustion speed during the early flame kernel development because of the suppressed mixture reactivity will reduce the reliability of the ignition process and the overall combustion stability. In an effort to address this issue, an ignition strategy using a multi-pole spark igniter is tested in this work. The igniter uses three electrically independent spark gaps to allow three spatially distributed spark discharge. The presence of the three independent poles offers the possibility for the poles to spark at the same time, sequentially, or to be reserved for instrumentation purposes.
2017-03-28
Technical Paper
2017-01-0678
Xiao Yu, Shui Yu, Zhenyi Yang, Qingyuan Tan, Mark Ives, Liguang Li, Mengzhu Liu, Ming Zheng
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems are progressing rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances. In this paper, inductive coils with different primary and secondary inductances as well as turning ratios were tested to investigate the effect of inductive ignition system parameters on discharging characteristics under different control parameter such as charging voltage and charging duration.
2017-03-28
Technical Paper
2017-01-0770
Tongyang Gao, Shui Yu, Hua Zhu, Tie Li, Jimi Tjong, Graham Reader, Ming Zheng
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder of high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent the premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel of adequate reactivity that is suitable for deterministic auto-ignition under a high compression ratio. In this work, the directly injected butanol is used to generate the pilot flame, while the intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broader the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of the background fuel and the scheduling of fuel direct injection are investigated through extensive laboratory experiments.
2017-03-28
Technical Paper
2017-01-1309
S. M. Akbar Berry, Hoda ElMaraghy, Johnathan Line, Marc Kondrad
Modularity in product architecture and its importance in product development has become a critical discussion topic in the last few decades. Several Product Modularity definitions and prospects were discussed by many researchers, however, most of the definitions and concepts are proliferated such that it is difficult to apply one universal definition to every modular product architecture and in product development. Automotive seat modular design and key factors for consideration towards modular seat design and assemblies are the main objectives of this work. The primary objectives are focused around the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
2017-03-28
Technical Paper
2017-01-0283
Mohammad K. Alam, Navid Nazemi, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components using this process. There are many interlinked process parameters (e.g. laser power, laser speed and powder feed rate) associated with laser cladding. These process parameters have a direct impact on the resultant bead geometry and the microhardness profile throughout the bead zone, dilution zone and heat affected zone (HAZ). A set of single bead laser cladding experiments were done using a 4 kW fibre laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel. A design of experiments approach was taken to explore a wide range of process parameter settings.
2017-03-28
Technical Paper
2017-01-0285
Navid Nazemi, Mohammad K. Alam, Ruth Jill Urbanic, Syed Saqib, Afsaneh Edrisy
Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties of a substrate such as corrosion and wear resistance. For a surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and the bead characteristics are varying for different overlap bead conditions. The complex temperature distributions in the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments performed with 40%, 50% and 60% bead overlaps for a three pass bead formation.
2017-03-28
Journal Article
2017-01-0303
Ran Cai, Xueyuan Nie, Jingzeng Zhang
Light-weighting of vehicles is one of the challenges for transportation industry due to the increasing pressure of demands in better fuel economy and environment protection. Advanced high strength steels (AHSS) are considered as prominent material of choice to realize lightweight auto body and structures at least in near term. Stamping of AHSS with conventional die materials and surface coatings, however, results in frequent die failures and undesired panel surface finish. A chromium nitride (CrN) coating with plasma nitriding case hardened layer on a die material (duplex treatment) is found to offer good wear and galling resistances. The coating failure initiates from fatigue cracking on the coating surface due to cyclic sliding frictions. In this work, cyclic inclined sliding wear test was used to imitate a stamping process for study on development of coating fatigue cracking, including crack length and spacing vs. sliding-cycles and sliding energy densities.
2017-03-28
Technical Paper
2017-01-0464
Guang Wang, Xueyuan Nie, Jimi Tjong
Abstract Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
2017-03-28
Technical Paper
2017-01-1388
S. M. Akbar Berry, Michael Kolich, Johnathan Line, Waguih ElMaraghy
Abstract Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
2017-03-28
Technical Paper
2017-01-0506
Xueyuan Nie, Jimi Tjong
Abstract Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
2017-03-28
Journal Article
2017-01-0616
Zhenyi Yang, Shouvik Dev, Marko Jeftic, Christopher Aversa, Akshay Ravi, David Ting, Ming Zheng
Abstract The pressure wave actions were investigated in the exhaust system of a single cylinder diesel engine through both experimental and simulation methods. The characteristics of the exhaust pressure waves under different engine operating conditions, such as engine load and exhaust backpressure, were examined. The results showed that the strength of the exhaust pressure wave was affected by both the in-cylinder pressure and the exhaust backpressure in the exhaust system during the period when the exhaust valves were open. The exhaust gas flow velocity was also estimated by the one dimensional simulation tool AVL BOOST™. The results suggested that the velocity of the exhaust gas fluctuated during the engine cycle, and followed trends similar to the exhaust pressure wave. The transient gas flow velocity was high when there was a strong compression wave, and it was reduced when the pressure fluctuations in the exhaust manifold were small.
2016-10-17
Technical Paper
2016-01-2175
Shui Yu, Kelvin Xie, Xiao Yu, Meiping Wang, Ming Zheng, Xiaoye Han, Jimi Tjong
Abstract A three-pole spark igniter, with the concept to broaden the ignition area, is employed in this paper to investigate the effect of spark discharge strategies on the early ignition burning process. The prototyped three-pole igniter has three independent spark gaps arranged in a triangular pattern with a circumradius of 2.3 mm. Direct-capacitor discharge techniques, utilizing close-coupled capacitors parallel to the spark gap, are applied on the three-pole igniter to enhance either the transient spark power or the overall energy. In particular, the simultaneous discharge of high energy plasma on three spark gaps can produce a surface-like ignition process which intensifies the plasma-flame interaction, thereby producing a rapid flame kernel development. The ignition strategies are evaluated in both constant volume combustion vessels and a modified single-cylinder metal engine.
2016-10-17
Technical Paper
2016-01-2301
Xiaoye Han, Qingyuan Tan, Meiping Wang, Jimi Tjong, Ming Zheng
Abstract This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
2016-04-05
Technical Paper
2016-01-0655
Farid Bahiraei, Amir Fartaj, Gholm-Abbas Nazri
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
2016-04-05
Technical Paper
2016-01-0229
Mohammed Ismail, Shahram Fotowat, Amir Fartaj
Abstract A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
2016-04-05
Technical Paper
2016-01-0749
Kelvin Xie, Tadanori Yanai, Zhenyi Yang, Graham Reader, Ming Zheng
Abstract Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
2016-04-05
Technical Paper
2016-01-0766
Tongyang Gao, Marko Jeftic, Geraint Bryden, Graham Reader, Jimi Tjong, Ming Zheng
Abstract The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
2016-04-05
Technical Paper
2016-01-0773
Shouvik Dev, Prasad Divekar, Tadanori Yanai, Xiang Chen, Ming Zheng
Abstract Dual fuel applications of alcohol fuels such as ethanol or butanol through port injection with direct injection of diesel can be effective in reduction of NOx. However, these dual fuel applications are usually associated with an increase in the incomplete combustion products such as hydrocarbons (HC), carbon monoxide (CO), and hydrogen (H2) emissions. An analysis of these products of incomplete combustion and the resulting combustion efficiency penalty was made in the diesel ignited alcohol combustion modes. The effect of EGR application was evaluated using ethanol and butanol as the port injected fuel, with varying alcohol fractions at the mid-load condition (10 -12 bar IMEP). The impact of varying the engine load (5 bar to 19 bar IMEP) in the diesel ignited ethanol mode on the incomplete combustion products was also studied. Emission measurements were taken and the net fuel energy loss as a result of the incomplete combustion was estimated.
2016-04-05
Journal Article
2016-01-0337
Ana M. Djuric, R.J. Urbanic, J.L. Rickli
Abstract Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
2016-04-05
Journal Article
2016-01-0336
R.J. Urbanic, R. Hedrick, Ana M. Djuric
Abstract When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
2016-04-05
Journal Article
2016-01-0338
R.J. Urbanic, Ana M. Djuric
Abstract The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
2016-04-05
Journal Article
2016-01-0499
Xu Zhang, Jennifer Johrendt
Abstract Successful manufacture of Carbon Fibre Reinforced Polymers (CFRP) by Long-Fibre Reinforced Thermoplastic (LFT) processes requires knowledge of the effect of numerous processing parameters such as temperature set-points, rotational machinery speeds, and matrix melt flow rates on the resulting material properties after the final compression moulding of the charge is complete. The degree to which the mechanical properties of the resulting material depend on these processing parameters is integral to the design of materials by any process, but the case study presented here highlights the manufacture of CFRP by LFT as a specific example. The material processing trials are part of the research performed by the International Composites Research Centre (ICRC) at the Fraunhofer Project Centre (FPC) located at the University of Western Ontario in London, Ontario, Canada.
2016-04-05
Journal Article
2016-01-0724
Tadanori Yanai, Christopher Aversa, Shouvik Dev, Graham Reader, Ming Zheng
Abstract In this study, impacts of neat n-butanol fuel injection parameters on direct injection (DI) compression ignition (CI) engine performance were investigated to gain knowledge for understanding the fuel injection strategies for n-butanol. The engine tests were conducted on a four-stroke single-cylinder DI CI engine with a compression ratio of 18.2:1. The effects of fuel injection pressure (40, 60 and 90 MPa) and injection timing in a single injection strategy were investigated. The results showed that an increase in injection pressure significantly reduced nitrogen oxides (NOx) emissions which is the opposite trend seen in conventional diesel combustion. The parallel use of a higher injection pressure and retarded injection timing was a proposed method to reduce NOx and cylinder pressure rise rate simultaneously. NOx was further reduced by using exhaust gas recirculation (EGR) while keeping near zero soot emissions.
2016-04-05
Journal Article
2016-01-0781
Usman Asad, Ming Zheng, Jimi Tjong
Abstract In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
2015-09-01
Technical Paper
2015-01-1816
Xiaoye Han, Ming Zheng, Jimi S. Tjong, Tie Li
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
2015-09-01
Technical Paper
2015-01-1889
Shui Yu, Kelvin Xie, Qingyuan Tan, Meiping Wang, Ming Zheng
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Viewing 1 to 30 of 131

Filter

  • Range:
    to:
  • Year: