Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 91
2014-10-13
Technical Paper
2014-01-2904
P. Christopher Manning, Eduardo D. Marquez, Leonard Figueroa, Douglas J. Nelson, Eli Hampton White, Lucas Wayne Shoults
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is ready to compete in the Year 3 Final Competition for EcoCAR 2: Plugging into the Future. The team is confident in the reliability of their vehicle, and expects to finish among the top schools at Final Competition. During Year 3, the team refined the vehicle while following the EcoCAR 2 Vehicle Development Process (VDP). Many refinements came about in Year 3 such as the implementation of a new rear subframe, the safety analysis of the high voltage (HV) bus, and the integration of Charge Sustaining (CS) control code. HEVT's vehicle architecture is an E85 Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV), which has many strengths and weaknesses. The primary strength is the pure EV mode and Series mode, which extend the range of the vehicle and reduce Petroleum Energy Usage (PEU) and Greenhouse Gas (GHG) emissions. A primary weakness is the architectures complexity, which made it difficult for the team to truly reap the benefits of the added components to the vehicle which are utilized in Parallel mode.
2014-10-13
Technical Paper
2014-01-2905
P. Christopher Manning, Eli White, Eduardo Marquez, Leonard Figueroa, Lucas Shoults, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle. The team selected a series-parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission as the final powertrain of choice.
2014-09-30
Technical Paper
2014-01-2292
Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri
Abstract Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations. Thus, the need for state-of-the-art tire-ice models capable of predicting accurate friction levels taking into account all operational conditions becomes evident.
2014-09-16
Technical Paper
2014-01-2176
Niloofar Rashidi Mehrabadi, Bo Wen, Rolando Burgos, Dushan Boroyevich, Chris Roy
Abstract The development of the concepts, terminology and methodology of verification and validation is based on practical issues, not the philosophy of science. Different communities have tried to improve the existing terminology to one which is more comprehensible in their own field of study. All definitions follow the same concept, but they have been defined in a way to be most applicable to a specific field of study. This paper proposes the Verification, Validation, and Uncertainty Quantification (VV&UQ) framework applicable to power electronic systems. Although the steps are similar to the VV&UQ frameworks' steps from other societies, this framework is more efficient as a result of the new arrangement of the steps which makes this procedure more comprehensible. This new arrangement gives this procedure the capability of improving the model in the most efficient way. Since the main goal of the VV&UQ process is to quantitatively assess the confidence in modeling and simulation, the second part of this paper focuses on uncertainty quantification.
2014-06-04
Article
The 109 open-wheel racecar originals competing at the 2014 Formula SAE Michigan event were created and built by collegiate students eager to show the results of their product development decisions.
2014-04-23
Article
Virginia Tech and the University of Virginia have joined the global Rolls-Royce University Technology Centers (UTC) network, consisting of research groups in universities identified to develop long-term research and technology programs.
2014-04-01
Technical Paper
2014-01-0885
Mustafa Ali Arat, Saied Taheri
Abstract A vehicle's response is predominately defined by the tire characteristics as they constitute the only contact between the vehicle and the road; and the surface friction condition is the primary attribute that determines these characteristics. The friction coefficient is not directly measurable through any sensor attachments in production-line vehicles. Therefore, current chassis control systems make use of various estimation methods to approximate a value. However a significant challenge is that these schemes require a certain level of perturbation (i.e. excitation by means of braking or traction) from the initial conditions to converge to the expected values; which might not be the case all the time during a regular drive. This study proposes an observer scheme that utilizes an instrumented tire (i.e. smart tire) as an additional sensor input and develops a sliding-mode observer based on tire force feedback to provide the estimated friction coefficient irrespective of the available excitation.
2014-04-01
Technical Paper
2014-01-1814
Abhijit Nitin Khare, Henning Lohse-Busch, Douglas Nelson
Abstract Ambient temperature plays an important role in the operational behavior of a vehicle. Temperature variances from 20 F to 72 F to 95 F produce different operation from different HEVs, as prescribed by their respective energy management strategies. The extra variable of Climate Control causes these behaviors to change again. There have been studies conducted on the differences in operational behavior of conventional vehicles as against HEVs, with and without climate control. Lohse-Bush et al conclude that operational behavior of conventional vehicles is much more robust as compared to HEVs and that the effect of ambient temperature is felt more prominently in HEVs (1). However, HEVs cover a broad range of powertrain architectures, climate control systems, vehicle weights etc.The objective of this paper is to examine three different HEVs under three different temperature conditions, both with or without climate control, and come up with observations and trends on their energy usage and operational behavior.
2014-04-01
Technical Paper
2014-01-1915
David Ord, Eli White, P. Christopher Manning, Abhijit Khare, Lucas Shoults, Douglas Nelson
Abstract The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is excited about the opportunity to apply for participation in the next Advanced Vehicle Technology Competition. EcoCAR 3 is a new four year competition sponsored by the Department of Energy and General Motors with the intention of promoting sustainable energy in the automotive sector. The goal of the competition is to guide students from universities in North America to create new and innovative technologies to reduce the environmental impact of modern day transportation. EcoCAR 3, like its predecessors, will give students hands-on experience in designing and implementing advanced technologies in a setting similar to that of current production vehicles. The primary goals of the competition are to improve upon a conventional internal combustion engine production vehicle by designing and constructing a powertrain that accomplishes the following: Reduce Energy Consumption Reduce Well-to-Wheel (WTW) GHG Emissions Reduce Criteria Tailpipe Emissions Maintain Consumer Acceptability in the area of Performance, Utility, and Safety Meet Energy and Environmental Goals, while considering Cost and Innovation This paper presents results from several modeling problems and conceptual vehicle designs.
2014-04-01
Technical Paper
2014-01-0503
Ada Tsoi, Nicholas Johnson, H. Gabler
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations. For equipped vehicles that reported side torso, side curtain, and frontal airbag deployment information, all vehicles recorded the correct status.
2014-04-01
Technical Paper
2014-01-1922
Robert Jesse Alley, Patrick Walsh, Nicole Lambiase, Brian Benoy, Kristen De La Rosa, Douglas Nelson, Shawn Midlam-Mohler, Jerry Ku, Brian Fabien
Abstract EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles. During the first and second years of EcoCAR 2, teams executed an Energy Storage System (ESS) design, integration and commissioning process.
2014-04-01
Technical Paper
2014-01-0502
Richard R. Ruth, Ada Tsoi
Abstract Kia and Hyundai released publicly available tools in the spring of 2013 to read model year (MY) 2013 vehicle event data recorders (EDRs). By empirical testing, this study determined the tools also read data from some 2010-2012 models as EDRs were phased in by the manufacturer. Fifty-four (54) MY 2010-2012 airbag control module EDRs from the National Highway Traffic Safety Administration's (NHTSA) New Car Assessment Program (NCAP) crash tests were downloaded direct-to-module. The vehicles analyzed were exposed to frontal, side moving deformable barrier (MDB), and side pole tests. The EDR data was compared to the reference instrumentation for speed and Delta V data. Other data elements were also tabulated but are not evaluated for accuracy because they were not fully exercised during the crash tests, the reference instrumentation was not available, or they were outside the scope of this paper.
2014-04-01
Technical Paper
2014-01-0079
Sukhwan Cho, Rebecca Anne Bandy, John Ferris, Joerg Schlinkheider, Marc Wimmershoff
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work. An algorithm is developed to determine when to switch from a throttle-only control strategy to a braking strategy.
2014-04-01
Technical Paper
2014-01-0105
Sukhwan Cho, Rebecca Anne Bandy, John Ferris, Joerg Schlinkheider, Marc Wimmershoff
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine. Next, the required changes to the throttle to affect these desired changes to engine torque are estimated by developing a linearized, inverse engine model based on the steady-state conditions.
2014-04-01
Technical Paper
2014-01-0121
Rebecca Anne Bandy, Sukhwan Cho, Cullen Matthews, John Celli, Robert Binns, John Ferris, Joerg Schlinkheider, Marc Wimmershoff
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive models of the powertrain and vehicle dynamics.
2014-04-01
Technical Paper
2014-01-0145
Jeremy Kolansky, Amandeep Singh, Jill Goryca
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model. The proposed strategy shows promise as a cost-effective solution to improve the ride of a military vehicle over multiple stochastic terrains considering variation in operating weight.
2014-04-01
Technical Paper
2014-01-0166
Kristofer D. Kusano, H. Gabler, Thomas I. Gorman
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries. The lower operating speed thresholds of some systems also greatly affected benefits estimates.
2014-04-01
Technical Paper
2014-01-0858
Shahyar Taheri, Corina Sandu, Saied Taheri
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved. The process of running dynamic FE tire simulations starts by statically inflating and loading the tire using an implicit method with refined mesh in the contact patch.
2014-01-15
Technical Paper
2013-01-9094
Waleed Faris, Hesham Rakha, Salah A.M. Elmoselhy
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends. It shows as well that microscopic modeling is the most accurate type of vehicle fuel consumption and emissions modeling and macroscopic modeling is most helpful in estimating aggregate emissions inventories.
2013-10-14
Technical Paper
2013-01-2492
Peter C. Manning, Eli White, Kyle Caroncino, Taylor Ashworth, Brian Kelly, Lucas Shoults, Douglas Nelson
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech has achieved the Year 2 goal of producing a 65% functional mule vehicle suitable for testing and refinement, while maintaining the series-parallel plug-in hybrid architecture developed during Year 1. Even so, further design and expert consultations necessitated an extensive redesign of the rear powertrain and front auxiliary systems packaging. The revised rear powertrain consists of the planned Rear Traction Motor (RTM), coupled to a single-speed transmission. New information, such as the dimensions of the high voltage (HV) air conditioning compressor and the P2 motor inverter, required the repackaging of the hybrid components in the engine bay. The P2 motor/generator was incorporated into the vehicle after spreading the engine and transmission to allow for the required space. This spreading of the components meant a redesign of the front powertrain mounts and integration of a torque damper as an interface with the combustion engine and P2 motor.
2013-09-24
Technical Paper
2013-01-2402
Darrell Bowman, Andrew Marinik, H. Gabler
Heavy-vehicle event data recorders (HVEDRs) provide a source of temporal vehicle data just prior to, during, and for a short period after, an event. In the 1990s, heavy-vehicle (HV) engine manufacturers expanded the capabilities of engine control units (ECU) and engine control modules (ECM) to include the ability to record and store small amounts of parametric vehicle data. This advanced capability has had a significant impact on vehicle safety by helping law enforcement, engineers, and researchers reconstruct events of a vehicle crash and understand the details surrounding that vehicle crash. Today, EDR technologies have been incorporated into a wide range of heavy vehicle (HV) safety systems (e.g., crash mitigation systems, air bag control systems, and behavioral monitoring systems). However, the adoption of EDR technologies has not been uniform across all classes of HVs or their associated vehicle systems. The objective of this research was to assess the current capabilities of HVEDRs and to evaluate the feasibility of installing HVEDRs or related technologies on the HV fleet with a gross vehicle weight rating (GVWR) greater than 4,536 kg (10,000 pounds).
2013-04-08
Technical Paper
2013-01-0160
P. Christopher Manning, Eli White, Douglas Nelson, Abhijit Khare
In an age of growing complexity with regards to vehicle control systems, verification and validation of control algorithms is a rigorous and time consuming process. With the help of rapid control prototyping techniques, designers and developers have cost effective ways of validating controls under a quicker time frame. These techniques involve developments of plant models that replicate the systems that a control algorithm will interface with. These developments help to reduce costs associated with construction of prototypes. In standard design cycles, iterations were needed on prototypes in order to finalize systems. These iterations could result in code changes, new interfacing, and reconstruction, among other issues. The time and resources required to complete these were far beyond desired. With the help of simulated interfaces, many of these issues can be recognized prior to physical integration. Two such simulation methods are Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL).
2013-04-08
Technical Paper
2013-01-0554
Nicole Lambiase, Brian Benoy, Kristen De La Rosa, Vahid Motevalli, George Molen, Douglas Nelson, Robert Alley, Patrick Walsh
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles. During the first year of EcoCAR, teams execute a rigorous powertrain architecture selection process to define technical goals and develop a powertrain architecture that would satisfy both team and competition requirements.
2013-04-08
Technical Paper
2013-01-0543
Robert Jesse Alley, Douglas Nelson, Eli White, P. Christopher Manning
A crucial step to designing and building more efficient vehicles is modeling powertrain energy consumption. While accurate modeling is indeed key to effective and efficient design, a fundamental understanding of the powertrain and auxiliary systems that contribute to the energy consumption of a vehicle is equally as important. This paper presents a methodology that has been packaged into a tool, called VTool (short for Vehicle Tool), which can be used to estimate the energy consumption of a vehicle powertrain. The method is intrinsically designed to foster understanding of the vehicle powertrain as it relates to energy consumption and losses while still providing reasonably accurate results. This paper briefly explains the methodology of VTool and demonstrates the capability of VTool as a design tool by presenting 4 example exercises. The first example is a parametric study of accessory load that examines the impact of accessory load on overall energy consumption by varying the accessory load from 0 kW to 4 kW.
2013-04-08
Technical Paper
2013-01-0723
Allison Daniello, Kristofer Kusano, H. Gabler
Predicting driver response to road departure and attempted recovery is a challenging but essential need for estimating the benefits of active safety systems. One promising approach has been to mathematically model the driver steering and braking inputs during departure and recovery. The objective of this paper is to compare a model developed by Volvo, Ford, and UMRTI (VFU) through the Advanced Crash Avoidance Technologies (ACAT) Program against a set of real-world departure events. These departure events, collected by Hutchinson and Kennedy, include the vehicle's off road trajectory in 256 road departure events involving passenger vehicles. The VFU-ACAT model was exercised for left side road departures onto the median of a divided highway with a speed limit of 113 kph (70 mph). At low departure angles, the VFU-ACAT model underpredicted the maximum lateral and longitudinal distances when compared to the departure events measured by Hutchinson and Kennedy. Two sets of driver parameters were used to simulate the trajectories, and similar results were seen for the two sets of driver parameters.
2013-04-08
Technical Paper
2013-01-0629
Jacob N. Lambeth, John Ferris, Alexander Reid, David Gorsich
Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. It is beneficial to characterize the terrain as a stochastic process, allowing limitless amounts of synthetic terrain to be created from a small number of parameters. A continuous-state Markov chain is proposed as an alternative to the traditional discrete-state chain currently used in terrain modeling practice. For discrete-state chains, the profile transitions are quantized then characterized by a transition matrix (with many values). In contrast, the transition function of a continuous-state chain represents the probability density of transitioning between any two states in the continuum of terrain heights. The transition function developed in this work uses a location-scale distribution with polynomials modeling the parameters as functions of the current state. A maximum likelihood estimator is used to parameterize the coefficients of these polynomials.
2013-04-08
Technical Paper
2013-01-1753
Jonathan King, Douglas Nelson
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the 2011-2014 EcoCAR 2 competition in which the team is tasked with re-engineering the powertrain of a GM donated vehicle. The primary goals of the competition are to reduce well to wheels (WTW) petroleum energy use (PEU) and reduce WTW greenhouse gas (GHG) and criteria emissions while maintaining performance, safety, and consumer acceptability. To meet these goals HEVT has designed a series parallel plug-in hybrid electric vehicle (PHEV) with multiple modes of operation. This paper will first cover development of the control system architecture with a dual CAN bus structure to meet the requirements of the vehicle architecture. Next an online optimization control strategy to minimize fuel consumption will be developed. A simple vehicle plant model will then be used for software-in-the-loop (SIL) testing to improve fuel economy. A more detailed plant model will then be developed for hardware-in-the-loop (HIL) testing.
2013-04-08
Technical Paper
2013-01-1265
Ada Tsoi, John Hinch, Richard Ruth, Hampton Gabler
This study evaluates the accuracy of 41 Event Data Recorders (EDR) extracted from model year 2012 General Motors, Chrysler, Ford, Honda, Mazda, Toyota, and Volvo vehicles subjected to New Car Assessment Program 56 kph full-frontal barrier crash tests. The approach was to evaluate (1) the vehicle longitudinal change in velocity or delta-V (ΔV) as measured by EDRs in comparison with the high-precision accelerometers mounted onboard test vehicles and (2) the accuracy of pre-crash speed, seatbelt buckle status, and frontal airbag deployment status. On average the absolute error for pre-crash speed between the EDR and reference instrumentation was only 0.58 kph, or 1.0% of the nominal impact speed. In all cases in which the EDRs recorded the seatbelt buckle status of the driver or right front passenger, the modules correctly reported that the occupants were buckled. EDRs reported airbag deployment correctly in all of the tests. The average absolute error was 4.20 kph (6.6%) for final longitudinalΔV and 4.32 kph (6.6%) for maximum longitudinal ΔV.
2013-04-08
Technical Paper
2013-01-0671
Rafael Fietzek, Philip Chin, Cannon Cheng, Russell LaBrie, John Ferris, Stephan Rinderknecht
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints. This paper presents the prototype test rig, high-fidelity terrain measurement process, seven degree of freedom car model, and the vertical actuator control strategy.
2013-04-08
Technical Paper
2013-01-0730
Kristofer D. Kusano, Hampton C. Gabler
Lane Departure Warning (LDW) is a production active safety system that can warn drivers of an unintended departure. Critical in the design of LDW and other departure countermeasures is understanding pre-crash driver behavior in crashes. The objective of this study was to gain insight into pre-crash driver behavior in departure crashes using Event Data Recorders (EDRs). EDRs are units equipped on many passenger vehicles that are able to store vehicle data, including pre-crash data in many cases. This study used 256 EDRs that were downloaded from GM vehicles involved in real-world lane departure collisions. The crashes were investigated as part of the NHTSA's NASS/CDS database years 2000 to 2011. Nearly half of drivers (47%) made little or no change to their vehicle speed prior to the collision and slightly fewer decreased their speed (43%). Drivers who did not change speed were older (median age 41) compared to those who decreased speed (median age 27). Drivers in lane departure crashes were traveling above the posted speed limit in 65% of cases.
Viewing 1 to 30 of 91

Filter

  • Range:
    to:
  • Year: