Viewing 1 to 10 of 10
Technical Paper
Apoorv P. Talekar, Ming-Chia Lai, Ke Zeng, Bo Yang, Marcis Jansons
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy sources like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but DI Diesel-CNG dual fuel engine is known to offer improvement in combustion efficiency and a reduction in exhaust gases. Dual fuel engine has characteristics similar to both SI engine and diesel engine, which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual fuel CI and SI CNG engines. In diesel-CNG dual fuel engine simulations and experiments, attention was on ignition delay, transition from auto-ignition to flame propagation, and heat released from the combustion of diesel and gaseous fuel. The end-gas autoignition processes under certain test conditions were also demonstrated.
Technical Paper
Ming Shen, Haojie Mao, Binhui Jiang, Feng Zhu, Xin Jin, Liqiang Dong, Suk Jae Ham, Palani Palaniappan, Clifford Chou, King Yang
To predict the injuries of child pedestrians and occupants in traffic incidents, finite element (FE) modeling has become a common research tool. Currently, there was no whole-body FE model for 10-year-old (10 YO) children. This paper introduces the development of two 10 YO whole-body pediatric FE models (named CHARM-10) representing a pedestrian and an occupant postures with sufficient anatomic details and reasonable biofidelity. The geometric data was obtained from medical images and the key dimensions were compared to literature data. Component-level sub-models were built and validated against experimental results of post mortem human subjects (PMHS). After the integration of the sub-models, the whole-body pedestrian model (standing) was assembled and a positioning procedure was then conducted to transform it into the occupant model (seated). The two FE models have shown reasonable responses in whole-body impact simulations.
Technical Paper
Manoj Mahala, Anindya Deb, Clifford Chou
Abstract Idealized mathematical models, also known as lumped parameter models (LPMs), are widely used in analyzing vehicles for ride comfort and driving attributes. However, the limitations of some of these LPMs are sometimes not apparent and a rigorous comparative study of common LPMs is necessary in ascertaining their suitability for various dynamic situations. In the present study, the mathematical descriptions of three common LPMs, viz. quarter, half and full car models, are systematically presented and solved for the appropriate response parameters such as body acceleration, body displacement, and, pitch and roll angles using representative passive suspension system properties. By carrying out a comparison of the three stated LPMs for hump-type road profiles, important quantitative insights, not previously reported in the literature, are generated into their behaviors so that their applications can be judicious and efficient.
Journal Article
Anshul Mittal, Anindya Deb, Clifford Chou
Abstract Rapid progress in the interdisciplinary field of automotive engineering and the pressing need for an environmental friendly alternative to metal and synthetic fiber-reinforced composites for vehicle structure have triggered recent research in the field of natural fiber-based composites. Their potential advantages are attributed to their light weight, low cost and biodegradability. However, their usage in present day automotive systems is restricted due a lower magnitude range of mechanical properties and limited study in this area. In contrast to mechanical joints, the adhesively bonded joints aid in reducing stress concentration, joining of dissimilar materials, corrosion prevention, weight reduction and a smoother finish. Thus, in the present study, failure load, and mean shear stress of single lap shear and double lap shear joints as a function of joint overlap length, are evaluated using a two part epoxy adhesive made by Huntsman.
Technical Paper
Tamer Badawy, Fadi Estefanous, Naeim Henein
Estimation of soot in real time would help in the development of engine controls during engine production to meet the emissions goals and for on-board diagnostics. This paper presents a new approach to the estimate the soot emissions from the ion current measured inside the cylinder during engine operation. The investigation was carried out on a 4.5L heavy duty, turbocharged diesel engine. The glow plug was modified to act as an ion current probe, in addition to its main function. Algorithms were developed for the ion current signal to estimate the soot formed on a cycle-by-cycle basis. A comparison was made between the estimated soot emissions and measurements made by using an opacity meter under steady state as well as under transient engine operating conditions. In this research, a non-linear multiple regression model (NLMR) was used to estimate soot percentage from the ion current signal.
Technical Paper
Fadi Adly Anis Estefanous, Tamer Badawy, Naeim Henein
This paper investigates the relationship between NOx and ion current measured inside the combustion chamber of a heavy duty diesel engine under different operating conditions. Nevertheless, ion current is a local signal, thus it is important to measure NOx concentrations at the same exact location of the ion current probe. A novel technique is developed to simultaneously sample in-cylinder NOx and measure the ion current signal by adapting gas sampling probes for ion sensing. The cycle-resolved traces for the rate of heat release, NO mole fraction and ion current were analyzed to determine the contribution of the premixed combustion and the mixing-diffusion controlled combustion on NO formation and ionization in diesel engines.
Technical Paper
Meng-Feng Li, Wen Chen, Hai Wu, David Gorski
This work is to propose a new Iterative Learning Observer (ILO)-based strategy for State Of Charge (SOC) estimation. The ILO is able to estimate the SOC in real time while identifying modeling errors and/or disturbances at the same time. An Electrical-Circuit Model (ECM) is adopted to characterize the Lithium-ion battery behavior. The ILO is designed based on this ECM and the stability is proved. Several experiments are conducted and the collected data is used to extract ECM parameters. The effectiveness of the estimated SOCs via ILO is verified by the experimental results. This implies that the ILO-based SOC determination scheme is effective to identify the SOC in real time.
Technical Paper
Tamer Badawy, Naeim Henein, Walter Bryzik
Signals indicative of in-cylinder combustion have been under investigation for the control of diesel engines to meet stringent emission standards and other production targets in performance and fuel economy. This paper presents the results of an investigation on the use of the ion current signal for the close loop control of a heavy duty four cylinder turbocharged diesel engine equipped with a common rail injection system. A correlation is developed between the start of ion current signal (SIC) and the location of the peak of premixed combustion (LPPC) in the rate of heat release trace. Based on this correlation, a PID closed loop controller is developed to adjust the injection timing for proper combustion phasing under steady and transient engine operating conditions.
Technical Paper
Atsushi Matsumoto, Yi Zheng, Xing-Bin Xie, Ming-Chia Lai, Wayne Moore
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Philip J Dingle, Ming-Chia D Lai
Despite being developed more than 100 years ago, the diesel engine has yet to achieve mass acceptance in the North American passenger car sector. In most other parts of the world, however, diesel engines have made considerable strides due in part to the common rail fuel injection system. Significant fuel economy, reduced exhaust emissions, invincible low-speed torque, and all-around good drivability are a few of the benefits associated with common rail technology, which are covered in-depth in Diesel Common Rail and Advanced Fuel Injection Systems.
Viewing 1 to 10 of 10


    • Range:
    • Year: