Criteria

Text:
Display:

Results

Viewing 1 to 30 of 87
Technical Paper
2014-09-16
Jay Wilhelm, Joseph Close
Uneven wing deployment of a Hybrid Projectile (HP), an Unmanned Aerial Vehicle (UAV) that is ballistically launched and then transforms, was investigated to determine the amount of roll and pitch produced during wing deployment. During testing of an HP prototype, it was noticed that sometimes the projectile began to slightly roll after the wings were deployed shortly after apogee. In this study, an analytical investigation was done to determine how the projectile body dynamics would be affected by the wings being deployed improperly. Improper and uneven wing deployment situations were investigated throughout the course of this study. The first analyzed was a single wing delaying to open. The second was if only one wing was to lock into a positive angle of incidence. The roll characteristics when both wings were deployed but only one was locked into an angle of incidence resulted in a steady state roll rate of 4.5 degrees per second. It is imperative to ensure that an HP wing deployment mechanism must be designed to deploy as evenly as possible.
Technical Paper
2014-09-16
Jay Wilhelm, Joseph Close, Wade Huebsch
A Hybrid Projectile (HP) is a ballistically launched round that transforms into an Unmanned Aerial Vehicle (UAV) at a designated point during flight. Aerodynamic control surfaces and associated control laws were sought that would extend the projectile's range using body lift and include guidance for a selected point of impact. Several challenges were encountered during the modification of an existing projectile, in this case a 40mm round, to achieve range extension and controllability. The control surfaces must be designed to allow for de-spin, controllability, and natural static stability. Also, a control system with laws and guidance relationships between heading, pitch or glide rate, and the associated aerodynamic surface movements needed to be developed. The designed aerodynamic surfaces, external ballistics, and control methods developed were modeled in a projectile flight simulator built in MATLAB. The base model was an M781 practice round and the aerodynamic coefficients and mass data were found in literature.
Technical Paper
2014-04-01
Bharadwaj Sathiamoorthy, Matthew C. Robinson, Evan Fedorko, Nigel Clark
Abstract Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012. Results showed that vehicles which travelled the route on 03/04/2012 after 2pm were subjected to higher yaw angles (9 - 14 degrees) compared to vehicles travelling between 12am and 2pm on the same day.
Technical Paper
2013-09-24
Gergis W. William, Samir Shoukry, Jacky Prucz, Thomas Evans
This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall. The research work presented in this paper reveals that the continuously changing angle orientation and local laminate thickness in the dome regions can be modeled by a unique approach that utilizes suitable transformations of the macromechanical composite properties and the local coordinate system.
Technical Paper
2013-09-08
Hemanth Kappanna, Marc Besch, Arvind Thiruvengadam, Oscar Delgado, Alessandro Cozzolini, Daniel Carder, Mridul Gautam, Shaohua Hu, Tao Huai, Alberto Ayala, Adewale Oshinuga, Randall Pasek
The study was aimed at assessing in-use emissions of a USEPA 2010 emissions-compliant heavy-duty diesel vehicle powered by a model year (MY) 2011 engine using West Virginia University's Transportable Emissions Measurement System (TEMS). The TEMS houses full-scale CVS dilution tunnel and laboratory-grade emissions measurement systems, which are compliant with the Code of Federal Regulation (CFR), Title 40, Part 1065 [1] emissions measurement specifications. One of the specific objectives of the study, and the key topic of this paper, is the quantification of greenhouse gas (GHG) emissions (CO2, N2O and CH4) along with ammonia (NH3) and regulated emissions during real-world operation of a long-haul heavy-duty vehicle, equipped with a diesel particulate filter (DPF) and urea based selective catalytic reduction (SCR) aftertreatment system for PM and NOx reduction, respectively. The TEMS was additionally outfitted with an MKS MultiGas® 2030-HS high-speed FTIR to quantify NH3 and N2O, along with other compounds of interest, at a frequency of 5 Hz.
Technical Paper
2013-09-08
Daniele Littera, Alessandro Cozzolini, Marc Besch, Mario Velardi, Daniel Carder, Mridul Gautam
Stringent emission regulations have forced drastic technological improvements in diesel after treatment systems, particularly in reducing Particulate Matter (PM) emissions. Those improvements generally regard the use of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and lately also the use of Selective Catalyst Reduction (SCR) systems along with improved engine control strategies for reduction of NOx emissions from these engines. Studies that have led to these technological advancements were made in controlled laboratory environment and are not representative of real world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process. In light of this, the study of the exhaust plume of a heavy duty diesel vehicle operated inside a subsonic environmental wind tunnel can give us an idea of the dilution process and the representative emissions of the real world scenario.
Technical Paper
2013-09-08
Alessandro Cozzolini, Daniele Littera, Ross Ryskamp, John Smallwood, Marc Besch, Mario Velardi, Hemanth Kappanna, Daniel Carder, Mridul Gautam
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel. Traditionally, natural gas engines are operated over an Otto-cycle employing a stoichiometric combustion strategy, and using sparkplugs to ignite the fuel and a three-way catalyst (TWC) to mitigate emissions of NOx, CO as well as HC.
Technical Paper
2013-04-08
S. Chaudhari, Deepak Gupta, Bhaskaran Gopalakrishnan
Industries related to automotive manufacturing and its supply chain play a key role in leaving a carbon footprint during an automobile's life cycle. Per the report from Lawrence Berkeley National Laboratory (LBNL) in March, 2008 [1], “motor vehicle industry in the U.S. spends about $3.6 billion on energy annually.” The proposed research will focus on energy savings opportunities in automotive manufacturing and its supplier network. The US Department of Energy (DOE) funds 24 Industrial Assessment Centers (IAC) throughout the U.S. that conduct energy assessments at many of these facilities. The results of these assessments are summarized in a database maintained by Rutgers University which acts as the central management body for all the IACs. This research will present key concepts summarized from this database. These concepts include: (1) top 10 energy saving recommendations,(2) top 10 energy savings implemented measures,(3) comparison of energy efficiency investment in small-and mid-sized automotive industry supply chain in pre and post economic slump,(4) impact of major federal incentives on energy efficiency investments and its correlation with the implementation of recommended measures from database, and(5) energy savings potential across the automotive industry.
Technical Paper
2012-09-24
Gergis W. William, Samir Shoukry, Jacky Prucz
The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The results indicated that a stress reduction could be achieved by a geometry change only, which could increase the amount of pressure sustained inside the vessel and ultimately increase the amount of hydrogen stored per volume.
Technical Paper
2012-06-01
Nigel Clark, David L. McKain, W Wayne, Daniel Carder, Mridul Gautam
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule. Fuel economy during evaluations representing half passenger load, which represented a 10% higher vehicle weight than empty weight, were 6% over the Paris driving schedule and 3% lower over the Cruise schedule than that observed during evaluations representative of empty/curb weight.
Technical Paper
2012-04-16
Bhaskaran Gopalakrishnan, Deepak Gupta, Afif Bitar
Automotive industries in the US and around the world have enormous impact on the economy of each country. Not just the major vehicle manufacturer, but all the other companies in the supply chain are equally important. This was evident with the earthquake and Tsunami that happened in March 2011. Because of the massive destruction at suppliers' facilities, the automakers in the US and other countries struggled to get the necessary parts and supplies. This created a ripple effect throughout the world and led to the closure of several automakers' facilities for a long time. Thus, the automotive supply chains are as important as the main automotive manufacturing facilities. Since these suppliers produce a lot of parts and supplies, the corresponding energy usage is also significant. The current research is focused on compressed air and process heating system analysis at one of the automotive parts manufacturer in Mexico. The Best Practices software tools (AIRMaster+ and PHAST) developed by the US Department of Energy (DOE) were used to create a baseline of the two systems and estimate energy savings from the proposed recommendations.
Technical Paper
2012-04-16
Zhenhua Zhu, Douglas Ward, W. Scott Wayne
The new General Motors 2-mode hybrid transmission for front-wheel-drive vehicles has been incorporated into a 2009 Saturn Vue by the West Virginia University EcoCAR team. The 2-mode hybrid transmission can operate in either one of two electrically variable transmission modes or four fixed gear modes although only the electrically variable modes were explored in this paper. Other major power train components include a GM 1.3L SDE turbo diesel engine fueled with B20 biodiesel and an A123 Systems 12.9 kWh lithium-ion battery system. Two additional vehicle controllers were integrated for tailpipe emission control, CAN message integration, and power train hybridization control. Control laws for producing maximum fuel efficiency were implemented and include such features as engine auto-stop, regenerative braking and optimized engine operation. The engine operating range is confined to a high efficiency area that improves the overall combined engine and electric motor efficiency. Simulation results using Powertrain System Analysis Toolkit (PSAT) indicate fuel economy of 28.4/29.4 mpgge over the customized Morgantown Urban Drive Schedule (MUDS)/Route 19 Highway (R19HW), 14.6 second 0-60 mph and 8.6 second 50-70 mph acceleration time.
Technical Paper
2012-04-16
David L. McKain, Scott Wayne, Nigel Clark
Relationships between diesel particulate matter (PM) mass and gaseous emissions mass produced by engines have been explored to determine whether any gaseous species may be used as surrogates to infer PM quantitatively. It was recognized that sulfur content of fuel might independently influence PM mass, since PM historically is composed of elemental carbon, organic carbon, sulfuric acid, ash and wear particles. Previous research has suggested that PM may be correlated with carbon monoxide (CO) for an engine that is exercised through a variety of speed and load cycles, but that the correlation does not extend to a group of engines. Large databases from the E-55/59 and Gasoline/Diesel PM Split programs were employed, along with the IBIS bus emissions database and several additional data sets for on- and off-road engines to examine possible relationships. Regressions using the E-55/59 database confirmed that Oxides of Nitrogen, Hydrocarbons, and Carbon Dioxide did not correlate satisfactorily with PM.
Technical Paper
2011-10-18
Robert F. Minehart, Patrick Browning, Jay Wilhelm, Shanti Hamburg, Mridul Gautam, Wade Huebsch
West Virginia University's Mechanical and Aerospace Engineering Department is studying the benefits of continuous payload volume in transforming projectiles. Continuous payload volume is the single largest vacancy in a vehicle that may be utilized. Currently there is a market for transforming projectiles, which are gun-launched (or tube-launched) vehicles stowed in an initial configuration; which deploy wings once exiting the launcher to become small unmanned aircraft. WVU's proposed design uses a helical hinge, which allows the wing sections to be externally stowed outside the UAV's fuselage. Additionally, the design positions the vehicles wing sections sub-bore (or smaller than the guns internal diameter), and flush (smooth and planer) to the surface of the fuselage. The typical transforming winged projectile design considered, stores its wing sections along the center axis of the fuselage. This bisects the payload space and limits the continuous payload carrying potential. Comparison of the designs is based on their respective continuous volume ratio (r c v ), which is calculated by comparing the single largest payload volume (V s ) available in a projectile to the total projectile volume (V t ).
Technical Paper
2011-10-18
Patrick H. Browning, Richard Cain, Kirk LaBarbara, Wade Huebsch, Jay Wilhelm
Mortar weapons systems have existed for more than five hundred years. Though modern tube-launched rounds are far more advanced than the cannon balls used in the 15th century, the parabolic trajectory and inability to steer the object after launch remains the same. Equipping the shell with extending aerodynamic surfaces transforms the unguided round into a maneuverable munition with increased range [1] and precision [2]. The subject of this work is the experimental analysis of transient aerodynamic behavior of a transforming tube-launched unmanned aerial vehicle (UAV) during transition from a ballistic trajectory to winged flight. Data was gathered using a series of wind tunnel experiments to determine the lift, drag, and pitching moment exerted on the prototype in various stages of wing deployment. Flight models of the design were broken down into three configurations: “round”, “transforming”, and “UAV”. Geometrically static tests which consisted of the round and UAV models were used to determine preand post-transformation aerodynamics.
Technical Paper
2011-09-11
Vincenzo Mulone, Alessandro Cozzolini, Prabash Abeyratne, Marc Besch, Daniele Littera, Mridul Gautam
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model. Objective of this study is model a DPF in real-time by means of the 1-D code ExhAUST (Exhaust Aftertreatment Unified Simulation Tool).
Technical Paper
2011-04-12
John Nuszkowski, Kevin Flaim, Gregory Thompson
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number. In addition, a special interest was taken into the variations in diesel particulate matter (DPM) measurements due to the fuel alteration.
Technical Paper
2011-04-12
Subodh Chaudhari, Deepak Gupta, Bhaskaran Gopalakrishnan
This research attempts to investigate the effect of change in system curve on the energy intensity method of measurement and verification of energy savings. With recent push from US government on energy efficiency through EPACT 2007 and upturn in performance contracted energy efficiency project implementations the effective and accurate evaluation of energy savings as compared to the baseline is of paramount importance. The authors have studied different methods of Measurement and Verification (M&V) of energy savings from literature to compare and contrast and clearly bring out merits and de-merits of each. Finally, the role of production level variable plays in establishing the baseline energy usage is discussed. Though modern models proposed in the literature of determining baseline energy usage consider production level, this variable is compounded from two variables viz., time of usage of a system and fraction of total capacity usage. This study aims to find if a model considering these variables yields significantly different baseline energy usage than the traditional model.
Technical Paper
2011-04-12
Mrinmoy Dam, John Nuszkowski, Gregory J. Thompson
Diesel engines are highly reliable, durable and are used for a wide range of applications with low fuel usage owing to its higher thermal efficiency compared to other mobile power sources. Heavy-duty diesel engines are used for both on-road and off-road applications and dominate the heavy-duty engine segment of the United States transportation market. Due to their high reliability, there are considerable numbers of on-road legacy heavy-duty diesel engine fleets still in use in the United States. These engines are relatively higher oxides of nitrogen (NOx) and particulate matter (PM) producers than post 2007 model year diesel engines. There have been various emission certification or verification programs which are carried out in states like California and Texas for different aftermarket retrofit devices, fuels and additive technologies for reducing NOx and PM emissions from these legacy diesel engines. During these programs, emissions from a candidate technology configuration are compared to a baseline condition using a representative legacy engine.
Technical Paper
2010-10-05
Gergis W. William
Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints. The behavior of joints are studied as a function of various parameters such as distance of hole from the edge, size of the hole, width of joint, clamping conditions, etc.
Technical Paper
2010-10-05
Gergis W. William
Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies. Finite element analysis was used to compare the performance of various design configurations.
Technical Paper
2010-04-12
Zhenhua Zhu, Andrew Yablonski, Howard Mearns, William Wayne
West Virginia University (WVU) is a participant in EcoCAR - The NeXt Challenge, an Advanced Vehicle Technology Competition sponsored by the U.S. Department of Energy, and General Motors Corporation. During the first year of the competition, the goal of the WVU EcoEvolution Team was to design a novel hybrid-electric powertrain for a 2009 Saturn Vue to increase pump-to-wheels fuel economy, reduce criteria tailpipe emissions and well-to-wheels greenhouse gas emissions (GHG) while maintaining or improving performance and utility. To this end, WVU designed a 2-Mode split-parallel diesel-electric hybrid system. Key elements of the hybrid powertrain include a General Motors 1.3L SDE Turbo Diesel engine, a General Motors Corporation 2-Mode electrically variable transmission (EVT) and an A123 Systems Lithium-Ion battery system. The engine will be fueled on a blend of 20% soy-derived biodiesel and 80% petroleum-derived ultra-low sulfur diesel fuel (B20). Emissions control is accomplished by a diesel oxidation catalyst, a catalyzed diesel particulate filter and selective catalytic reduction (SCR) with urea injection.
Technical Paper
2002-05-06
Michael H. McMillian, Mingzhen Cui, Mridul Gautam, Michael Keane, Tong-man Ong, William Wallace, Edward Robey
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF). The present effort investigates the mutagenicity of particulate matter derived from FT and DF fuel combustion in a single-cylinder diesel engine by relating the in-vitro mutagenic activity of the PM to engine operating conditions and particle size.
Technical Paper
2001-09-24
Baskaran Ganesan, Nigel N. Clark
Selective Catalytic Reduction (SCR), using urea injection, is being examined as a method for substantial reduction of oxides of nitrogen (NOx) for diesel engines, but the urea injection rates must be controlled to match the NOx production which may need to be predicted during open loop control. Unfortunately NOx is usually measured in the laboratory using a full-scale dilution tunnel and chemiluminescent analyzer, which cause delay and diffusion (in time) of the true manifold NOx concentration. Similarly, delay and diffusion of measurements of all emissions cause the task of creating instantaneous emissions models for vehicle simulations more difficult. Data were obtained to relate injections of carbon dioxide (CO2) into a tunnel with analyzer measurements. The analyzer response was found to match a gamma distribution of the input pulse, so that the analyzer output could be modeled from the tunnel CO2 input. The relationship between measured carbon dioxide and diffused power was established for a heavy-duty engine and was used to predict instantaneous emissions of carbon dioxide for various engine test cycles.
Technical Paper
2001-09-24
Michael H. McMillian, Mridul Gautam
The emissions reduction of Fischer-Tropsch (FT) diesel fuel has been demonstrated in several recent publications in both laboratory engine testing and in-use vehicle testing. Reduced emission levels have been attributed to several chemical and physical characteristics of the FT fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating. Some of the effects of these attributes on the combustion characteristics in diesel engines have only recently been documented. In this study, a Ricardo Proteous, single-cylinder, 4-stroke DI engine is instrumented for in-cylinder pressure measurements. The engine was run at several steady engine states at multiple timing conditions using both federal low sulfur and natural gas derived FT fuels. The emissions and performance data for each fuel at each steady state operating conditions were compared. The cylinder pressure data was used to determine a suite of thermodynamic indicators, which are used to help explain the emissions variations between fuels types.
Technical Paper
2001-03-05
Sougato Chatterjee, Carl McDonald, Ray Conway, Hassan Windawi, Keith Vertin, Chuck A. LeTavec, Nigel N. Clark, Mridul Gautam
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition. A one-year technology validation program is being run on vehicles from several diesel engine fleets in Southern California to evaluate emissions reductions using this CRDPF system and ultra low sulfur diesel fuel.
Technical Paper
2000-10-16
Ralph D. Nine, Nigel N. Clark, Paul Norton
Chassis based emissions characterization of heavy-duty vehicles has advanced over the last decade, but the understanding of the effect of test schedule on measured emissions is still poor. However, this is an important issue because the test schedule should closely mimic actual vehicle operation or vocation. A wide variety of test schedules was reviewed and these cycles were classified as cycles or routes and as geometric or realistic. With support from the U.S. Department of Energy Office of Transportation Technologies (DOE/OTT), a GMC box truck with a Caterpillar 3116 engine and a Peterbilt over the road tractor-trailer with a Caterpillar 3406 engine were exercised through a large number of cycles and routes. Test weight for the GMC was 9,980 kg and for the Peterbilt was 19,050 kg. Emissions characterization was performed using a heavy-duty chassis dynamometer, with a full-scale dilution tunnel, analyzers for gaseous emissions, and filters for PM emissions. In units of g/mile, the emissions varied substantially from test schedule to test schedule.
Technical Paper
2000-06-19
David L. McKain, Nigel N. Clark, Thomas H. Balon, Paul J. Moynihan, Sheila A. Lynch, Thomas C. Webb
Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City. Vehicle emissions (carbon monoxide, oxides of nitrogen, hydrocarbons, particulate matter) and fuel economy were measured and the performance of hybrid-electric transit buses was compared to that of conventional buses over the Central Business District (CBD) and New York Bus driving cycles.
Technical Paper
1999-10-25
Mridul Gautam, Sriram Popuri, Bret Rankin, Mohindar Seehra
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups. The paper discusses the results from the trap filtration and initial regeneration experiments of preheat/forced convection regeneration scheme.
Technical Paper
1999-05-03
Kevin L. Chandler, Paul Norton, Nigel Clark
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins L10-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 3176B Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.
Viewing 1 to 30 of 87

Filter

  • Range:
    to:
  • Year: