Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 8 of 8
2015-04-14
Journal Article
2015-01-0285
Ehsan Moradi-Pari, S M Osman Gani, Yaser P. Fallah, Mohammad Naserian, Allan Lewis
Abstract Cooperative collision warning (CCW) systems use communication networks as a main component for creating situational awareness and eventually hazard detection. Simulation and analysis of such systems are generally more complicated due to the system being composed of components from very different domains of communication and vehicle safety. These components are inherently developed and modeled in different domains, as their basic operations are usually defined and engineered by researchers from different disciplines. Creating a simulation tool for CCW systems requires combining simulation models that are developed using different methodologies. As a result, a unified tool for study of such systems is not readily available. In this paper, we describe a co-simulation tool that models both components of communication and hazard prediction in one framework.
2012-06-01
Technical Paper
2011-01-2469
Nigel Clark, David L. McKain, W Wayne, Daniel Carder, Mridul Gautam
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule.
2012-04-16
Technical Paper
2012-01-0655
Satbir Singh, Shiyu Liu, Hailin Li
The nitrogen dioxide (NO₂) emissions of compression ignition diesel engines are usually relatively small, especially when operated at medium and high loads. Recent experimental investigations have suggested that adding hydrogen (H₂) into the intake air of a diesel engine leads to a substantial increase in NO₂ emissions. The increase in NO₂ fraction in the total NOx is more pronounced at lower engine load than at medium- and high-load operation, especially when a small amount of H₂ is added. However, the chemistry causing the increased NO₂ formation in H₂-diesel dual-fuel engines has not been fully explored. In the present work, kinetics of NO and NO₂ formation in a H₂-diesel dual-fuel engine are investigated using a CFD model integrated with a reduced hydrocarbon oxidation chemistry and an oxides of nitrogen (NOx) formation mechanism. A low-load and a medium-load operating condition are selected for numerical simulations.
2010-10-05
Journal Article
2010-01-1950
ABM Siddiq Khan, Nigel Clark
Transit buses contribute a meager amount to the U.S. criteria pollutant and greenhouse gas (GHG) inventory, but they attract a lot of attention from the public and from local government, due to their nature of operation. Transit bus fleets are often employed for the introduction of advanced heavy-duty vehicle technology and the formulation of new performance models. Emissions and fuel consumption data, gained using a chassis dynamometer, are often used to evaluate performance of these buses. However, the effect of road grade on fuel consumption and emissions most often is not accounted for in chassis dynamometer characterization. Grade effect on transit buses' fuel consumption was investigated using the road-load equation. It was observed that two parameters, including the type of terrain that buses traverse and the percentage of grade for that terrain, needed to be determined for this investigation.
2010-10-05
Technical Paper
2010-01-1967
Nigel Clark, David L. McKain, Petr Sindler, Ronald Jarrett, John Nuszkowski, Mridul Gautam, W Wayne, Gregory Thompson, Ricky Sonny
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
2010-10-05
Technical Paper
2010-01-2001
Lijuan Wang, Nigel Clark, Pingen Chen
Heavy-duty trucks are an important sector to evaluate when seeking fuel consumption savings and emissions reductions. With fuel costs on the rise and emissions regulations becoming stringent, vehicle manufacturers find themselves spending large amounts of capital improving their products in order to be compliant with regulations. The Powertrain System Analysis Toolkits (PSAT), developed by the Argonne National Laboratory (ANL), is a simulation tool that helps mitigate costs associated with research and automotive system design. While PSAT has been widely used to predict the fuel consumption and exhaust emissions of conventional and hybrid light-duty vehicles, it also may be employed to test heavy-duty vehicles. The intent of this study was to develop an accurate model that predicts emissions and fuel economy for heavy-duty vehicles for use within PSAT.
2010-10-05
Technical Paper
2010-01-1968
Idowu Olatunji, Scott Wayne, Mridul Gautam, Nigel Clark, Gregory Thompson, David McKain, Petr Sindler, John Nuszkowski
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
1999-04-27
Technical Paper
1999-01-2251
Nigel Clark, Mridul Gautam, Donald Lyons, Chris Atkinson, Wenwei Xie, Paul Norton, Keith Vertin, Stephen Goguen, James Eberhardt
Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California #2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NOx) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state #2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without.
Viewing 1 to 8 of 8