Criteria

Text:
Display:

Results

Viewing 1 to 30 of 97
2015-04-14
Journal Article
2015-01-1085
Marc C. Besch, Joshua Israel, Arvind Thiruvengadam, Hemanth Kappanna, Daniel Carder
Abstract This study was aimed at experimentally investigating the impact of diesel/natural gas (NG) dual-fuel retrofitting onto gaseous emissions emitted by i) legacy, model year (MY) 2005 heavy-duty engines with cooled EGR and no after-treatment system, and ii) a latest technology engine equipped with DPF and urea-SCR after-treatment systems that is compliant with 2010 US-EPA emissions standards. In particular, two different dual-fuel conversion kits were evaluated in this study with pure methane (CH4) being used as surrogate for natural gas. Experiments were conducted on an engine dynamometer over a 13-mode steady-state test cycle as well as the transient FTP required for engine certification while gaseous emissions were sampled through a CVS system. Tailpipe NOx emissions were observed at a comparable level for diesel and diesel/CH4 dual-fuel operation for the 2010 compliant engine downstream the SCR.
2015-04-14
Technical Paper
2015-01-1606
Saroj Pradhan, Arvind Thiruvengadam, Pragalath Thiruvengadam, Marc C. Besch, Daniel Carder
Heavy-duty diesel (HDD) engines are the primary propulsion source for most heavy-duty vehicle freight movement and have been equipped with an array of aftertreatment devices to comply with more stringent emissions regulations. In light of concerns about the transportation sector's influence on climate change, legislators are introducing requirements calling for significant reductions in fuel consumption and thereby, greenhouse gas (GHG) emission over the coming decades. Advanced engine concepts and technologies will be needed to boost engine efficiencies. However, increasing the engine's efficiency may result in a reduction in thermal energy of the exhaust gas, thus contributing to lower exhaust temperature, potentially affecting aftertreatment activity, and consequently rate of regulated pollutants. This study investigates the possible utilization of waste heat recovered from a HDD engine as a means to offset fuel penalty incurred during thermal management of SCR system.
2015-04-14
Technical Paper
2015-01-0290
Amin Tahmasbi-Sarvestani, Hadi Kazemi, Yaser P. Fallah, Mohammad Naserian, Allan Lewis
Abstract Pedestrians account for a significant ratio of traffic fatalities; as a result, research on methods of reducing vehicle-pedestrian crashes is of importance. In this paper, we describe a system architecture that allows the use of vehicle-to-pedestrian (V2P) communication as a means of generating situational awareness and eventually predicting hazards and warning drivers and pedestrians. In contrast, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication for safety applications, V2P has not received much attention. One major reason for this lack of attention had been the unavailability of communication mechanisms between pedestrians and vehicles. Recent advances in enabling Wi-Fi and dedicated short range communication (DSRC) based communication using smart-phones is changing this picture. As a result, V2P communication can be considered as a possible solution.
2015-03-10
Technical Paper
2015-01-0009
Bingjie Zhang, Siti Khalijah Mazlan, Shuheng Jiang, Alberto Boretti
Abstract With the purpose of reducing emission level while maintaining the high torque character of diesel engine, various solutions have been proposed by researchers over the world. One of the most attractive methods is to use dual fuel technique with premixed gaseous fuel ignited by a relatively small amount of diesel. In this study, Methane (CH4), which is the main component of natural gas, was premixed with intake air and used as the main fuel, and diesel fuel was used as ignition source to initiate the combustion. By varying the proportion of diesel and CH4, the combustion and emissions characteristics of the dual fuel (diesel/CH4) combustion system were investigated. Different cases of CFD studies with various concentration of CH4 were carried out. A validated 3D quarter chamber model of a single cylinder engine (diesel fuel only) generated by using AVL Fire ESE was modified into dual fuel mode in this study.
2015-03-10
Technical Paper
2015-01-0007
Alberto Boretti, Shuheng Jiang, Joseph Scalzo
Abstract Hydrogen Internal Combustion Engine (ICE) vehicles using a traditional ICE that has been modified to use hydrogen fuel are an important mid-term technology on the path to the hydrogen economy. Hydrogen-powered ICEs that can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG) are a way of addressing the widespread lack of hydrogen fuelling infrastructure in the near term. Hydrogen-powered ICEs have operating advantages as all weather conditions performances, no warm-up, no cold-start issues and being more fuel efficient than conventional spark-ignition engines. The Wankel engine is one of the best ICE to be converted to run hydrogen. The paper presents some details of an initial investigation of the CAD and CAE modeling of a novel design where two jet ignition devices per rotor are replacing the traditional two spark plugs for a faster and more complete combustion.
2015-03-10
Technical Paper
2015-01-0006
Alberto Boretti, Shuheng Jiang, Joseph Scalzo
Abstract The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
2014-09-16
Technical Paper
2014-01-2101
Joseph Dygert, Melissa Morris, Patrick Browning
Abstract The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
2014-09-16
Technical Paper
2014-01-2164
Srikanth Gururajan, Mario Luca Fravolini, Matthew Rhudy, Antonio Moschitta, Marcello Napolitano
Abstract Recent catastrophic air crashes have shown that physical redundancy is not a foolproof option for failures on Air Data Systems (ADS) on an aircraft providing airspeed measurements. Since all the redundant sensors are subjected to the same environmental conditions in flight, a failure on one sensor could occur on the other sensors under certain conditions such as extreme weather; this class of failure is known in the literature as “common mode” failure. In this paper, different approaches to the problem of detection, identification and accommodation of failures on the Air Data System (ADS) of an aircraft are evaluated. This task can be divided into component tasks of equal criticality as Sensor Failure Detection and Identification (SFDI) and Sensor Failure Accommodation (SFA). Data from flight test experiments conducted using the WVU YF-22 unmanned research aircraft are used.
2014-04-01
Journal Article
2014-01-1099
Matthew C. Robinson, Nigel Clark
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
2014-04-01
Technical Paper
2014-01-1588
Peter Bonsack, Ross Ryskamp, Marc Besch, Daniel Carder, Mridul Gautam, John Nuszkowski
Abstract Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
2013-09-17
Technical Paper
2013-01-2203
Jay Wilhelm, Christopher Gioia, Wade Huebsch, Mridul Gautam
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
2013-09-17
Technical Paper
2013-01-2096
Vinay Jakkali, Wade Huebsch, Ashish Robert, Shanti Hamburg, Patrick H. Browning
There is an ever growing need in the aircraft industry to increase the performance of a flight vehicle. To enhance performance of the flight vehicle one active area of research effort has been focused on the control of the boundary layer by both active and passive means. An effective flow control mechanism can improve the performance of a flight vehicle by eliminating boundary layer separation at the leading edge (as long as the energy required to drive the mechanism is not greater than the savings). In this paper the effectiveness of a novel active flow control technique known as dynamic roughness (DR) to eliminate flow separation in a stalled NACA 0012 wing has been explored. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency.
2013-09-17
Journal Article
2013-01-2304
Richard Brian Cain, Patrick Browning, Wade Huebsch, Jay Wilhelm
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
2013-09-17
Journal Article
2013-01-2262
Jay Wilhelm, Joesph Close, Wade Huebsch, Mridul Gautam
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
2013-09-17
Technical Paper
2013-01-2097
Patrick H. Browning, Mridul Gautam, Wade Huebsch
This paper documents the numerical and experimental investigation of a new type of wing section being developed at West Virginia University that shows good potential for use in wings in low Reynolds number flows. These wing sections have been designed with a minimum number of flat sides, or facets, which are arranged in such a way as to promote flow over the surface similar to traditional smooth airfoil shapes, but without the complexity of the typically highly contoured airfoil form. 2D numerical techniques have been employed to determine appropriate geometric limitations of the wing section facets, and finite span wings comprised of these faceted wing sections have been tested in wind tunnels in wing-only and wing-plus-body configurations to determine their basic aerodynamic performance. The latest results of these efforts, as well as some speculation as to the mechanisms at work are presented.
2012-05-15
Journal Article
2011-01-2440
Derek Johnson, Louise Ayre, Nigel Clark, Thomas Balon, Paul Moynihan
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
2011-10-18
Journal Article
2011-01-2559
Jay Wilhelm, Patrick Browning, Mridul Gautam, Wade Huebsch
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
2011-09-13
Technical Paper
2011-01-2287
Gergis William, Mark S. Shoukry, Jacky C. Prucz
Gasoline-powered vehicles compose the vast majority of all light-duty vehicles in the United States. Improving fuel economy is currently a topic of great interest due to the rapid rise in gasoline costs as well as new fuel-economy and greenhouse-gas emissions standards. The Chevrolet Silverado is currently one of the top selling trucks in the U.S. and has been previously modeled using the commercial finite element code LS-DYNA by the National Crash Analysis Center (NCAC). This state-of the art model was employed to examine alternative weight saving configurations using material alternatives and replacement of traditional steel with composite panels. Detailed mass distribution analysis demonstrated the chassis assembly to be an ideal candidate for weight reduction and was redesigned using Aluminum 7075-T6 Alloy and Magnesium Alloy HM41A-F.
2011-09-11
Technical Paper
2011-24-0187
Alessandro Cozzolini, Vincenzo Mulone, Prabash Abeyratne, Daniele Littera, Mridul Gautam
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
2011-09-11
Technical Paper
2011-24-0175
Daniele Littera, Marc Besch, Alessandro Cozzolini, Daniel Carder, Arvind Thiruvengadam, Adam Sayres, Hemanth Kappanna, Mridul Gautam, Adewale Oshinuga
In order to comply with stringent 2010 US-Environmental Protection Agency (EPA) on-road, Heavy-Duty Diesel (HDD) emissions regulations, the Selective Catalytic Reduction (SCR) aftertreatment system has been judged by a multitude of engine manufacturers as the primary technology for mitigating emissions of oxides of nitrogen (NOx). As virtually stand-alone aftertreatment systems, SCR technology further represents a very flexible and efficient solution for retrofitting legacy diesel engines as the most straightforward means of cost-effective compliance attainment. However, the addition of a reducing agent injection system as well as the inherent operation limitations of the SCR system due to required catalyst bed temperatures introduce new, unique problems, most notably that of ammonia (NH₃) slip.
2011-09-11
Technical Paper
2011-24-0183
Vincenzo Mulone, Alessandro Cozzolini, Prabash Abeyratne, Marc Besch, Daniele Littera, Mridul Gautam
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
2011-09-11
Journal Article
2011-24-0191
Daniele Littera, Alessandro Cozzolini, Marc Besch, Arvind Thiruvengadam, Mridul Gautam
This paper discusses the design and qualification of a High Temperature Sampling System (HTSS), capable of stripping the volatile fraction from a sample flow stream in order to provide for quantification of total, solid and volatile particulate matter (PM) on a near real-time basis. The sampling system, which incorporates a heated diesel oxidation catalyst, is designed for temperatures up to 450°C. The design accounts for molecular diffusion of volatile compounds, solid particles diffusion and reaction kinetics inside one channel of the oxidation catalyst. An overall solid particle loss study in the sampling was performed, and numerical results were compared with experimental data gathered at the West Virginia University Engine and Emissions Research Laboratory (EERL) and West Virginia University's Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (THDVETL).
2010-01-20
Article
January marks an annual tradition at SAE International that has been taking place since its beginning in 1905—the end of one president’s tenure and the beginning of another’s.
2009-11-02
Technical Paper
2009-01-2652
David L. McKain, Nigel Clark, Richard J. Atkinson, Zac J. Luzader, Bradley Rutledge
Yard hostlers are tractors (switchers) used to move containers at ports and storage facilities. While many speed-time driving cycles for assessing emissions and performance from heavy-duty vehicles exist, a driving cycle representative of yard hostler activity at Port of Long Beach, CA was not available. Activity data were collected from in-use yard hostlers as they performed ship loading/unloading, rail loading/unloading and other yard routines, primarily moving containers on trailers or carts. The activity data were then used to develop four speed-time driving cycles with durations of 1200 seconds, representing light and heavy ship activities and light and heavy load rail activities. These cycles were constructed using actual speed-time data collected during activity logging and the cycles created were statistically comparable to each subset of activity data.
2009-11-02
Technical Paper
2009-01-2672
Yuebin Wu, Nigel Clark, Daniel Carder, Benjamin Shade
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
2009-04-20
Technical Paper
2009-01-0909
Michelangelo Ardanese, Raffaello Ardanese, Marc C. Besch, Theodore R. Adams, Venkata Sathi, Benjamin C. Shade, Mridul Gautam, Adewale Oshinuga, Matt Miyasato
For engine operations involving low load conditions for an extended amount of time, the exhaust temperature may be lower than that necessary to initiate the urea hydrolyzation. This would necessitate that the controller interrupt the urea supply to prevent catalyst fouling by products of ammonia decomposition. Therefore, it is necessary for the engine controller to have multiple calibrations available in regions of engine operation where the aftertreatment does not perform well, so that optimal exhaust conditions are guaranteed during the wide variety of engine operations. In this study the test engine was equipped with a catalyzed diesel particulate filter (DPF) and a selective catalytic reduction system (SCR), and programmed with two different engine calibrations, namely the low-NOx and the low fuel consumption (low-FC).
2009-04-20
Technical Paper
2009-01-1125
John Nuszkowski, Gregory J. Thompson
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
2009-04-20
Technical Paper
2009-01-1183
Raffaello Ardanese, Michelangelo Ardanese, Marc C. Besch, Theodore R. Adams, Arvind Thiruvengadam, Benjamin C. Shade, Mridul Gautam, Adewale Oshinuga, Matt Miyasato
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
2009-04-20
Journal Article
2009-01-0619
John Nuszkowski, Gregory J. Thompson, Michael Ursic
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
2008-12-09
Article
The drive for ever-increasing efficiency is leading researchers to look into long-haul trailers as an area where improvements can be made. With 73% of the weight of 14.6-m (48-ft) trailers being in the chassis, floor, and structural materials, these were the targets of research presented at the SAE Commercial Vehicle Engineering Congress.
Viewing 1 to 30 of 97

Filter

  • Range:
    to:
  • Year: