Criteria

Text:
Display:

Results

Viewing 1 to 30 of 83
WIP Standard
2014-07-02
This document describes the features and functions of the CXPI protocol. The CXPI protocol provides some selected features of the Controller Area Network (CAN) protocol implemented on a UART-based data link for mainly HMI (Human Machine Interface) of road vehicles electric systems. This information report is a description of the CXPI protocol, which is specified in the JASO D015 CXPI document published by JASO. The JASO D015 CXPI specification is the normative reference for the CXPI protocol. The CXPI specification is maintained by JSAE (Society of Automotive Engineers of Japan, Inc.). This information report does not supersede any information contained in the JASO D015 CXPI specification. It has the sole purpose of providing textual description and graphical illustrations to ease reading and interpretation of the CXPI protocol.
WIP Standard
2013-11-05
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure. This document depicts five different levels of security measures that may be required for the various types of communication.
WIP Standard
2013-10-28
This SAE Recommended Practice defines the Physical Layer and portions of the Data Link Layer of the OSI model for data communications. In particular, this document specifies the physical layer requirements for any Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) data link which operates on a single wire medium to communicate among Electronic Control Units (ECU) on road vehicles. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. This document is to be referenced by the particular vehicle OEM Component Technical Specification which describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document. ECU environmental and other requirements when provided in the Component Technical Specification, shall supercede the requirements of this document.
Standard
2012-11-19
This document covers the tests to be performed on all SAE J2602-1 defined Master and Slave nodes. Tests described in this document will ensure a minimum standard level of performance to which all compatible Electronic Control Unit (ECUs) and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-2 is to improve the interoperability and interchangeability of LIN devices within a network by verifying the devices pass a minimum set of tests. To allow for easy cross-reference, this document is arranged such that the conformance test for a given section in SAE J2602-1 is in the same section in SAE J2602-2. This document is to be referenced by the particular vehicle Original Equipment Manufacturer (OEM) component technical specification that describes any given ECU in which the LIN data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document.
Standard
2012-11-19
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602-1 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document. ECU environmental and other requirements, when provided in the component technical specification, shall supersede the requirements of this document.
Standard
2011-05-02
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Standard
2011-04-01
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Standard
2011-04-01
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Standard
2011-04-01
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
WIP Standard
2011-01-31
To define a common test plan for approval of ICs that contain CAN communication transceivers. This document will define the test circuit, the circuit layout and the bus load requirements to validate the IC. The document includes functional and behavioral validation of the physical layer components. The qualification requirements will define pass and fail criteria, test method, test setup and load box/DUT configuration.
WIP Standard
2011-01-31
To define a common test plan for approval of ICs that contain LIN communication transceivers. This document will define the test circuit, the circuit layout and the bus load requirements to validate the IC. The document includes functional and behavioral validation of the physical layer components. The qualification requirements will define pass and fail criteria, test method, test setup and load box/DUT configuration.
WIP Standard
2010-10-04
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
WIP Standard
2010-05-25
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation. Although devices may be constructed that can be configured to operate in either of the two primary implementations defined herein, it is expected that most manufacturers will focus specifically on either the 10.4 Kbps implementation or the 41.6 Kbps implementation depending on their specific application and corporate philosophy toward network usage.
WIP Standard
2010-03-10
This document defines a level of standardization in the implementation of the digital pulse scheme for reporting sensor information via Single Edge Nibble Transmission (SENT) encoding. This standard will allow ECU and tool manufacturers to satisfy the needs of multiple end users with minimum modifications to the basic design. This standard will benefit vehicle Original Equipment Manufacturers (OEMs) by achieving lower ECU costs due to higher industry volumes of the basic design. Requirements stated in this document provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This assures data communication among all connected devices regardless of supplier. The intended audience includes, but is not limited to, ECU suppliers, sensor suppliers, component release engineers and vehicle system engineers
Standard
2010-03-02
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the ISO model for a 500 KBPS High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 KBPS. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only requirements which may be tested at the ECU and media level.
Standard
2010-01-27
This document defines a level of standardization in the implementation of the digital pulse scheme for reporting sensor information via Single Edge Nibble Transmission (SENT) encoding. This standard will allow ECU and tool manufacturers to satisfy the needs of multiple end users with minimum modifications to the basic design. This standard will benefit vehicle Original Equipment Manufacturers (OEMs) by achieving lower ECU costs due to higher industry volumes of the basic design. Requirements stated in this document provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This assures data communication among all connected devices regardless of supplier. The intended audience includes, but is not limited to, ECU suppliers, sensor suppliers, component release engineers and vehicle system engineers
Standard
2010-01-07
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
Standard
2008-02-26
This document defines a level of standardization in the implementation of the digital pulse scheme for reporting sensor information via Single Edge Nibble Transmission (SENT) encoding. This standard will allow ECU and tool manufacturers to satisfy the needs of multiple end users with minimum modifications to the basic design. This standard will benefit vehicle Original Equipment Manufacturers (OEMs) by achieving lower ECU costs due to higher industry volumes of the basic design. Requirements stated in this document provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This assures data communication among all connected devices regardless of supplier. The intended audience includes, but is not limited to, ECU suppliers, sensor suppliers, component release engineers and vehicle system engineers.
Standard
2007-04-10
This document defines a level of standardization in the implementation of the digital pulse scheme for reporting sensor information via Single Edge Nibble Transmission (SENT) encoding. This standard will allow ECU and tool manufacturers to satisfy the needs of multiple end users with minimum modifications to the basic design. This standard will benefit vehicle Original Equipment Manufacturers (OEMs) by achieving lower ECU costs due to higher industry volumes of the basic design. Requirements stated in this document provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This assures data communication among all connected devices regardless of supplier. The intended audience includes, but is not limited to, ECU suppliers, sensor suppliers, component release engineers and vehicle system engineers.
Standard
2006-09-12
The Class A Task Force of the Vehicle Network for Multiplex and Data Communications Committee is publishing this SAE Information Report to provide insight into Class A Multiplexing. Multiplexed actuators are generally defined as devices which accept information from the multiplexed bus. A multiplexed actuator can be an output device controlled by the operator or an intelligent controller. A Multiplex actuator can also be a display device that reports the status of a monitored vehicle function. This document is intended to help the network system engineers and is meant to stimulate the design thought process. A list of multiplexed actuator examples is provided in Appendix A, Figure A1. Many other examples can be it identified.
Standard
2006-09-12
The subject matter contained within this SAE Information Report is set forth by the Class A Task Force of the Vehicle Network for Multiplexing and Data Communications (Multiplex) Committee as information the network system designer should consider. The Task Force realizes that the information contained in this report may be somewhat controversial and a consensus throughout the industry does not exist at this time. The Task Force also intends that the analysis set forth in this document is for sharing information and encouraging debate on the benefits of utilizing a multiple network architecture.
Standard
2006-09-12
This SAE Information Report will explain the difference between Class A, B, and C networks and clarify through examples the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard
2006-09-12
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard
2006-06-07
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation. Although devices may be constructed that can be configured to operate in either of the two primary implementations defined herein, it is expected that most manufacturers will focus specifically on either the 10.4 Kbps implementation or the 41.6 Kbps implementation depending on their specific application and corporate philosophy toward network usage.
Standard
2005-09-20
SAE J2602-2 Recommended Practice LIN Conformance Testing Scope: The Scope for the SAE J2602-2 LIN Conformance Testing Task Force is to create a Recommended Practice that will define conformance test procedures that will ensure that SAE J2602 LIN Protocols have been correctly implemented on vehicles. The current document, SAE J2602 LIN Network for Vehicle Applications, is a subset of specifications taken from the LIN Consortium 2.0 Specification. This Recommended Practice was generated as a result of direct consultation with and between the members of the LIN Consortium and the SAE J2602 LIN Task Force. This J2602-2 document is expected to assist users of the SAE J2602 LIN Protocol, as well as users of the LIN 2.0 Protocol, by providing the following benefits: Promote Uniform Testing Procedures Increase Productivity of Testing Processes Reduce Testing and Evaluation Costs Help Harmonize Global Markets As with the J2602 document, work on this conformance test specification will be generated by the SAE J2602-2 Task Force in consultation with the members of the LIN Consortium.
Standard
2005-09-20
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document. ECU environmental and other requirements, when provided in the component technical specification, shall supercede the requirements of this document.
Standard
2004-08-24
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document. ECU environmental and other requirements, when provided in the component technical specification, shall supercede the requirements of this document.
Standard
2004-07-27
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Standard
2004-07-27
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Standard
2004-07-27
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850. SAE J1850 defines two and only two formats of message headers.
Viewing 1 to 30 of 83