Criteria

Text:
Display:

Results

Viewing 1 to 10 of 10
2015-04-14
Technical Paper
2015-01-0831
Wonah Park, Youngchul Ra, Eric Kurtz, Werner Willems, Rolf D. Reitz
Abstract The low temperature combustion concept is very attractive for reducing NOx and soot emissions in diesel engines. However, it has potential limitations due to higher combustion noise, CO and HC emissions. A multiple injection strategy is an effective way to reduce unburned emissions and noise in LTC. In this paper, the effect of multiple injection strategies was investigated to reduce combustion noise and unburned emissions in LTC conditions. A hybrid surrogate fuel model was developed and validated, and was used to improve LTC predictions. Triple injection strategies were considered to find the role of each pulse and then optimized. The split ratio of the 1st and 2nd pulses fuel was found to determine the ignition delay. Increasing mass of the 1st pulse reduced unburned emissions and an increase of the 3rd pulse fuel amount reduced noise. It is concluded that the pulse distribution can be used as a control factor for emissions and noise.
2015-04-14
Journal Article
2015-01-1617
Brien Fulton, Simon Petrovic, Michiel Van Nieuwstadt, Jon Dixon, Daniel Roettger, Andres Arevalo
Abstract Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
2015-01-14
Technical Paper
2015-26-0004
Jitendra Shah
Abstract A first step towards autonomous rear-end collision avoidance is to start providing natural support to driver in avoiding collision by steering and braking intervention. The proposed system detects slower-moving and stationary vehicles ahead and classifies the risk of having a rear-end-collision. If the risk is high and there is insufficient space to avoid a collision by braking only, the system helps the driver to steer around the obstacle by steering rear toe angle of the wheels individually. A lot of research already exist in the rear wheel steering but the role of rear wheel steering in collision avoidance is not researched yet in great details. Rear wheel steering is used to increase agility and manoeuvrability of vehicle at lower vehicle speed and stability of vehicle at higher vehicle speed.
2014-04-01
Technical Paper
2014-01-1531
Joel Michelin, Frederic Guilbaud, Alain Guil, Ian Newbigging, Emmanuel Jean, Martina Reichert, Mario Balenovic, Zafar Shaikh
Abstract Future Diesel emission standards for passenger cars, light and medium duty vehicles, require the combination of a more efficient NOx reduction performance along with the opportunity to reduce the complexity and the package requirements to facilitate it. With the increasing availability of aqueous urea, DEF or AdBlue® at service stations, and improved package opportunities, the urea SCR technical solution has been demonstrated to be very efficient for NOx reduction; however the complexity in injecting and distributing the reductant remains a challenge to the industry. The traditional exhaust system contains Diesel Oxidation Catalysts (DOC), Diesel Particulate Filters (DPF) and Selective Catalytic Reduction (SCR), all require additional heat to facilitate each of their specific functions.
2013-09-08
Technical Paper
2013-24-0065
Joseph Kermani, Gaetano De Paola, Vincent Knop, Christophe Garsi, Helmut Ruhland, Werner Willems, Tobias Kaudewitz, Aiko Mork
The more and more severe regulations on exhaust emissions from vehicles and the worldwide demand for fuel consumption reduction impose continuous improvements of the engine thermal efficiency. Base engine geometrical setups are important aspects which have to be taken into account to improve the engine efficiency. This paper discusses the influence of the bore-to-stroke ratio on emissions, fuel consumption and full load performances of a Diesel engine. The expected advantage of a reduced bore-to-stroke ratio is mainly a decrease of the thermal losses, due to a higher volume-to-surface ratio, reducing the wall surfaces, responsible for the heat losses, per volume of gas. The advantages concerning the wall heat losses are opposed to the disadvantages of lower volumetric efficiency, as a smaller bore requires smaller valve diameter. Additionally does a reduction of the bore-to-stroke ratio lead to an increase of the friction losses, as the mean piston speed increases.
2013-04-08
Technical Paper
2013-01-1092
Anand Krishnasamy, Rolf D. Reitz, Werner Willems, Eric Kurtz
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
2011-04-12
Technical Paper
2011-01-0836
Hai-Wen Ge, Chang-Wook Lee, Yu Shi, Rolf D. Reitz, Werner Willems
The present work proposes a methodology for diesel engine development using scaling laws and computational optimization with multi-dimensional CFD tools. A previously optimized 450cc HSDI diesel engine was down-scaled to 400cc size using recently developed scaling laws. The scaling laws were validated by comparing the performance of these two engines, including pressure, HRR, peak and averaged temperature, and pollutant emissions. A novel optimization methodology, which is able to simultaneously optimize multiple operating conditions, was proposed. The method is based on multi-objective genetic algorithms, and was coupled with the KIVA3V Release 2 code to further optimize the down-scaled diesel engine. An adaptive multi-grid chemistry model was used in the KIVA3V code to reduce the computational cost of the optimization. The computations were conducted using high-throughput computing with the CONDOR system.
2010-04-12
Technical Paper
2010-01-0789
Ulf Kirchner, Rainer Vogt, Matti Maricq
Particle number emissions are measured with two instruments according to the upcoming European emission regulations for light-duty diesel passenger vehicles and compared to data from other methods, including the current regulatory total particulate matter (PM) mass, photo-acoustic soot sensor (PASS) and engine exhaust particle sizer (EEPS). At the very low emission levels of diesel particulate filter (DPF) equipped vehicles, the solid particle number data correlate well with soot mass and with particle number measured by EEPS, if only those particles belonging to the accumulation mode are considered in the latter case. PN differences of ≻100% between tests of the same vehicle are observed. Comparison of the two PN instruments and the photoacoustic soot sensor show that these are systematic differences which originate primarily with the vehicle and not from instrument uncertainties.
2008-10-06
Journal Article
2008-01-2434
Maik Bergmann, Rainer Vogt, Joseph Szente, Matti Maricq, Thorsten Benter
This paper presents an alternative and relatively simple method which allows the use of ordinary ejector-type diluters over a wide range of sample inlet conditions including elevated pressures and temperatures. After calibration of the ejector diluter, the dilution can be accurately characterized using only the pressures at the inlet and the outlet of the diluter and the sample temperature. The method is based on a semi-empirical, stationary model taking into account the critical parameters needed to predict the dilution factor. Under steady state operation it achieves accuracies estimated to be below ±8% (95% confidence interval) for diluter inlet pressures in the range of 1000 - 4000 mbar absolute and temperatures between 20 - 200°C. Performance under actual vehicle testing conditions is evaluated upstream of the DPF for a diesel vehicle run on a chassis dynamometer.
2007-09-16
Technical Paper
2007-24-0116
Maik Bergmann, Volker Scheer, Rainer Vogt, Thorsten Benter
Four dynamic PM measurement instruments (EEPS3090, DMS500, DMM230, AVL483) are studied in terms of their usability for diesel exhaust measurements under transient and steady state conditions. Measurements for various engine and exhaust aftertreatment strategies as well as on a Combustion Aerosol Standard (CAST) were conducted. The utilized sampling concepts comprised pre-DPF, tailpipe and CVS tunnel measurements. All results obtained from the two particle size spectrometers (EEPS3090 and DMS500) were compared to corresponding SMPS and CPC values, while the PM mass measurement instruments (DMM230 and AVL483) were compared to filter data. In addition, PM mass was estimated from the transient particle size spectra of EEPS3090 and DMS500, assuming different particle density functions, and was also compared to the corresponding filter data. All instruments were suitable to resolve fast changes in PM emissions.
Viewing 1 to 10 of 10

    Filter

    • Range:
      to:
    • Year: