Criteria

Text:
Display:

Results

Viewing 1 to 30 of 82
2017-10-08
Technical Paper
2017-01-2401
Elana Chapman, Pat Geng, Yaowei Zhao, Susan Zhang, JunJun Ma, Jianqiang Gong
Abstract The impact of gasoline composition on vehicle particulate emissions response has been widely investigated and documented. Correlation equations between fuel composition and particulate emissions have also been documented, e.g. Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN emissions correlate very well with these indices. In a previous paper, global assessment with PEI on fuel sooting tendency was presented [1]. This paper will continue the previous theme by the authors, and cover China gasoline in more detail. With air pollution an increasing concern, along with more stringent emission requirements in China, both OEMs and oil industries are facing new challenges. Emissions controls require a systematic approach on both fuels and vehicles. Chinese production vehicle particulate emissions for a range of PEI fuels are also presented.
2017-10-08
Technical Paper
2017-01-2441
Zhao Ding, Li Chen, Chengliang Yin, Jian Yao, Chunhao Lee, Farzad Samie
Abstract Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
2017-09-17
Journal Article
2017-01-2502
David B. Antanaitis, Matthew Robere
Abstract The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
2017-09-17
Journal Article
2017-01-2498
David B. Antanaitis, E Lloyd
Abstract This paper describes the development work that went into the creation of the SAE J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications. The SAE J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command). Data generated by this procedure may be used as a direct assessment of the flow performance of a brake hydraulic component, or they may be used to build subsystem or system-level models.
2017-09-17
Journal Article
2017-01-2521
Stacey Scherer
Abstract Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
2017-09-17
Journal Article
2017-01-2526
Robert G. Sutherlin
Abstract As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
2017-09-17
Journal Article
2017-01-2532
David B. Antanaitis, Michael Shenberger, Max Votteler
Abstract The high performance brake systems of today are usually in a delicate balance - walking the fine line between being overpowered by some of the most potent powertrains, some of the grippiest tires, and some of the most demanding race tracks that the automotive world has ever seen - and saddling the vehicle with excess kilograms of unsprung mass with oversized brakes, forcing significant compromises in drivability with oversized tires and wheels. Brake system design for high performance vehicles has often relied on a very deep understanding of friction material performance (friction, wear, and compressibility) in race track conditions, with sufficient knowledge to enable this razor’s edge design.
2017-09-04
Technical Paper
2017-24-0167
Enrico Mattarelli, Carlo Rinaldini, Tommaso Savioli, Giuseppe Cantore, Alok Warey, Michael Potter, Venkatesh Gopalakrishnan, Sandro Balestrino
Abstract This work reports a CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine. The engine main features (bore, stroke, port timings, et cetera) are defined in a previous stage of the project, while the current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consists in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and three different operating conditions are considered. A CFD-3D simulation by using a customized version of the KIVA-4 code is performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allow us to define the most effective geometric configuration, named baseline.
2017-06-05
Journal Article
2017-01-1762
Michael Roan, M. Lucas Neurauter, Douglas Moore, Dan Glaser
Abstract Hybrid and electric vehicles (HVs and EVs) have demonstrated low noise levels relative to their Internal Combustion Engine (ICE) counterparts, particularly at low speeds. As the number of HVs/EVs on the road increases, so does the need for data quantifying auditory detectability by pedestrians; in particular, those who are vision impaired. Manufacturers have started implementing additive noise solutions designed to increase vehicle detectability while in electric mode and/or when traveling below a certain speed. A detailed description of the real-time acoustic measurement system, the corresponding vehicular data, development of an immersive noise field, and experimental methods pertaining to a recent evaluation of candidate vehicles is provided herein. Listener testing was completed by 24 legally blind test subjects for four vehicle types: an EV and HV with different additive noise approaches, an EV with no additive noise, and a traditional ICE vehicle.
2017-06-05
Technical Paper
2017-01-1794
William Seldon, Jamie Hamilton, Jared Cromas, Daniel Schimmel
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1793
William Seldon, Amer Shoeb, Daniel Schimmel, Jared Cromas
Abstract As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of exhaust system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of the GT-power engine and exhaust model and to update internal best practices for modeling. This paper will explore the details of an exhaust focused correlation project that was performed on a naturally aspirated spark ignition eight-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem.
2017-06-05
Technical Paper
2017-01-1869
Glenn Pietila, Gang Yin, Branton Dennis IV
Abstract During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
2017-03-28
Technical Paper
2017-01-0312
ZiQiang Sheng, Pankaj Mallick
Abstract Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
2017-03-28
Technical Paper
2017-01-0226
Vesna Savic, Louis Hector, Ushnish Basu, Anirban Basudhar, Imtiaz Gandikota, Nielen Stander, Taejoon Park, Farhang Pourboghrat, Kyoo Sil Choi, Xin Sun, Jun Hu, Fadi Abu-Farha, Sharvan Kumar
Abstract This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
2017-03-28
Technical Paper
2017-01-1667
Scott Piper, Mark Steffka, Vipul Patel
Abstract With the increasing content of electronics in automobiles and faster development times, it is essential that electronics hardware design and vehicle electrical architecture is done early and correctly. Today, the first designs are done in the electronic format with circuit and CAD design tools. Once the initial design is completed, several iterations are typically conducted in a “peer review” methodology to incorporate “best practices” before actual hardware is built. Among the many challenges facing electronics design and integration is electromagnetic compatibility (EMC). Success in EMC starts at the design phase with a relevant “lessons learned” data set that encompasses component technology content, schematic and printed circuit board (PCB) layout, and wiring using computer aided engineering (CAE) tools.
2017-03-28
Technical Paper
2017-01-1665
Qigui Wang, Peggy Jones, Yucong Wang, Dale Gerard
Abstract With the increasing use of aluminum shape castings in structural applications in automobiles, assurance of cast product integrity and performance has become critical in both design and manufacturing. In this paper, the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized. Examples of newly developed technologies for alloy design, melting and melt treatment, casting and heat treatment processes in aluminum casting are reviewed. Robust design and development of high integrity aluminum castings through an Integrated Computational Materials Engineering (ICME) approach is also discussed.
2017-03-28
Technical Paper
2017-01-1616
Scott A. Rush
Abstract Modern automotive manufacturing and after-sale service environments require tailoring of configuration values or “calibrations” within the vehicle’s various electronic control units (ECUs) to that vehicle’s specific option content. Historically, ECU hardware and software limitations have led designers to implement calibratable values using opaque binary blocks tied directly to ECU internal software data structures. Such coupling between calibration data files and ECU software limits traceability and reuse across different software versions and ECU variants. However, more and more automotive ECUs are featuring fast microprocessors, large memories, and preemptive, multi-tasking operating systems that open opportunities to object-oriented approaches. This paper presents the CalDef system for automotive ECU calibration software architecture.
2017-03-28
Technical Paper
2017-01-1365
Michael Larsen
Abstract Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
2017-03-28
Technical Paper
2017-01-1112
Jian yao, Li Chen, Ding Zhao Jr, Chunhao Lee, Ying Huang, Yin Chengliang
Abstract The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
2017-03-28
Technical Paper
2017-01-1131
Keith Gilbert, Srini Mandadapu, Christopher Cindric
Abstract The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
2017-03-28
Technical Paper
2017-01-0010
Vinay Vaidya, Ramesh S, Venkatesh Kareti, Smitha K.P., Priti Ranadive
Abstract Currently, Model Based Development (MBD) is the de-facto methodology in automotive industry. This has led to conversions of legacy code to Simulink models. Our previous work was related to implementing the C2M tool to automatically convert legacy code to Simulink models. While the tool has been implemented and deployed on few OEM pilot code-sets there were several improvement areas identified w.r.t. the generated models. One of the improvement areas identified was that the generated model used atomic blocks instead of abstracted blocks available in Simulink. E.g. the generated model used an ADD block and feedback loop to represent an integration operation instead of using an integrator block directly. This reduced the readability of the model even though the functionality was correct. Thus, as a user of the model, an engineer would like to see abstract blocks rather than atomic blocks.
2017-03-28
Technical Paper
2017-01-0363
Karthik Ramaswamy, Vinay L. Virupaksha, Jeanne Polan, Biswajit Tripathy
Abstract Expanded Polypropylene (EPP) foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles is predominantly driven by Computer Aided Engineering (CAE). This makes it necessary to have a validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and its effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties.
2017-03-28
Technical Paper
2017-01-1200
Vijay Saharan, Kenji Nakai
Abstract Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
2017-03-28
Technical Paper
2017-01-0343
Xiao Wu, Zhigang Wei, HongTae Kang, Abolhassan Khosrovaneh
Abstract Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
2017-03-28
Journal Article
2017-01-1338
Karthik Ramaswamy, Bhaskar Patham, Vesna Savic, Biswajit Tripathy
Abstract Cellular foams have found a predominant application in automotive industry for efficient energy absorption so as to meet stringent and continuously improving vehicle crashworthiness and occupant protection criteria. The recent inclusion of pedestrian protection regulations mandate the use of foams of different densities for impact energy absorption at identified impact locations; this has paved the way for significant advancements in foam molding techniques such as dual density and tri-density molding. With increased emphasis on light-weighting, solutions involving the use of polymeric or metallic foams as fillers in hollow structures - foam encapsulated metal structures - are being explored. Another major automotive application of foams is in the seat comfort area, which again involves foams of intricate shapes and sizes. In addition, a few recently developed foams are anisotropic, adding on to the existing complexities.
2017-03-28
Technical Paper
2017-01-1604
Christina Michael, Badih Jawad, Liping Liu, Vernon Fernandez, Sabah Abro, Craig Zinser, Dave Guidos
Abstract The objective of this research is to develop a component based enhanced production process after End of Line (EOL) testing. This process will add more quality validation evaluations, but will not require any disassembling of the parts or damage to them. It will help the suppliers to avoid scrap and rework parts as well as General Motors (GM) to reduce warranty and recalls. An Enhanced Production Process was implemented in March, 2016 at a supplier in Mexico. The Enhanced Audit Station implementation is to ensure that the supplier is satisfying the Production Part Approval Process (PPAP) requirements. The most important four components are: Touch Appearance Lighting and Color (TALC), Appearance Approval Report (AAR), Dimensional Checks, and Function Testing. Through statistics, a pilot study was conducted to correlate the selected variables to reduce warranty.
2017-03-28
Journal Article
2017-01-1297
Robert Peckham, Sumit Basu, Marcelo Ribeiro, Sandra Walker
Abstract This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
2017-03-28
Journal Article
2017-01-1534
Nina Tortosa, David Schroeck, Tony Nagle, Guy Flynt
Abstract The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
2017-03-28
Journal Article
2017-01-1707
C. Matthew Enloe, Jason Coryell, Jeff Wang
Abstract Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
Viewing 1 to 30 of 82

Filter

  • Range:
    to:
  • Year: