Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 97
2018-04-03
Technical Paper
2018-01-0269
Arjun Prakash, Jan-Hendrik Redmann, Karl Giles, Roger Cracknell, Niall Turner, Allen A. Aradi, Andrew Lewis
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (e.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection and turbocharging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes and perform strongly to provide fuel related benefits. Fuel octane quality is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given level of boosting of the intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
2018-04-03
Technical Paper
2018-01-0742
Jeff Howell, Martin Passmore, Steve Windsor
The drag coefficient at zero yaw angle is the single parameter used to define the aerodynamic drag characteristics of a passenger car. However this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and a variant of wind-averaged-drag is suggested as the best option. A wind-averaged-drag coefficient is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by applying a weighted road speed.
2018-04-03
Technical Paper
2018-01-0705
Anton Kabanovs, Andrew Garmory, Martin Passmore, Adrian Gaylard
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of on board camera and sensor systems. Previous work has shown that eddy resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary break-up, coalescence and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and give an idea of the computational cost associated with these extra physics models. A quarter scale generic SUV model is used as a test case in which the continuous phase is solved using the Spalart Allmaras Improved Delayed Detached Eddy Simulation model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach. The TAB secondary break-up and the stochastic O’Rourke coalescence models are used.
2018-04-03
Technical Paper
2018-01-0717
Jonathan Jilesen, Adrian Gaylard, Tom Linden, Ales Alajbegovic
Side glass soiling due to A-Pillar overflow is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps, to achieve lower drag targets has meant that A-Pillar overflow has become more common. A-Pillar overflow, however, can be a major concern if important regions of the side glass are affected. The ability to predict where and under which conditions the A-Pillar will overflow is important for making correct design decisions. The development of a numerical simulation solution is desirable as experimental testing requires a late stage prototype, making it very difficult and costly to correct problems. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing simulation and numerical results on a test vehicle. These results include both with and without wipers, as the presence of wipers was found to impact the A-Pillar overflow in the experiments.
2018-04-03
Technical Paper
2018-01-0718
Max Varney, Martin Passmore, Adrian Gaylard
Sports Utility Vehicles (SUVs) often have blunt rear end geometries for design and practicality, but the large base area can make a significant contribution to the aerodynamic drag. The base pressure can be increased with a number of passive and active methods but these are typically tested at zero degrees yaw. In the work reported here a pseudo-active system that moves each side taper independently is investigated to combine a visually square geometry (at rest) with optimal drag reductions at non-zero yaw. A parametric study has been undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor Model. The aerodynamic effect of implementing asymmetric side tapering has been assessed for a range of yaw angles with force and moment coefficients. The effect of increased model complexity (or realism) has also been studied with the introduction of wheels and partial taper spans.
2018-04-03
Technical Paper
2018-01-0785
Edward W. Palmer, Wilko Jansen, Adaikala Palaniswamy, Megan Parfitt
A number of market factors such as customer demand for improved connectivity and infotainment systems, automated driver assist systems and electrification of powertrain have driven an increase in the number of electrical systems and components within the cabin of automotive vehicles. These systems have limited operating temperature windows, therefore markets with high ambient temperatures and solar loading represent a significant challenge for these systems due to high cabin temperatures. Traditionally climatic facilities have been used replicate the conditions seen in these markets in order to understand the performance of these systems. However such facilities have a number of limitations such as fixed solar arrays, secondary radiation from the walls and substantial operating costs limiting testing to envelope tests. Therefore the requirement for CAE based approach to more accurately represent the conditions seen in the real world is clear.
2018-04-03
Technical Paper
2018-01-0727
Graham Hodgson, Martin Passmore, Andrew Garmory, Adrian Gaylard
Surface contamination or soiling of the exterior of road vehicles can be unsightly, reduce visibility and customer satisfaction and with the increasing application of surface mounted sensors can degrade the performance of advanced driver assistance systems. Experimental methods of evaluating the surface contamination are increasingly used in the product development process but the results are generally subjective. The use of computational methods of predicting soiling make objective measures possible, but comparable data from experiment is an important validation requirement. This paper describes the development of an objective measure of base surface contamination arising during experiments. A variety of rear slant geometries of a 25% scale generic SUV model are compared through a series of controlled experiments in the Loughborough University Large Wind Tunnel. Base soiling is generated using UV doped water introduced from a known location to simulate spray from a tyre.
2018-04-03
Technical Paper
2018-01-0867
Frederik Botes, David McGeoch, Paul Darnell, Andrew Hillis, Sam Akehurst
Fuel economy and emission challenges are pushing automotive OEMs to develop alternative hybrid-electric, and full-electric powertrains. This increases variation in potential powertrain architectures, exacerbating the already complex control software used to coordinate various propulsion devices within the vehicle. Safety of this control software must be ensured through high-integrity software monitoring functions that detect faults and ensure safe mitigating action is taken. With the complexity of the control software, this monitoring functionality has itself become complex, requiring extensive modification for each new powertrain architecture. Significant effort is required to develop, calibrate, and verify to ensure safety (as defined by ISO 26262). But this must also be robust against false fault-detection, thereby maximising vehicle availability to the customer.
2017-10-08
Technical Paper
2017-01-2255
Raul Payri, Jaime Gimeno, Santiago Cardona, Sridhar Ayyapureddi
Abstract A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
2017-10-08
Technical Paper
2017-01-2429
Felix Leach, Martin Davy, Adam Weall, Brian Cooper
Abstract Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
2017-09-04
Technical Paper
2017-24-0075
Felix Leach, Riyaz Ismail, Martin Davy, Adam Weall, Brian Cooper
Abstract Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
2017-03-28
Technical Paper
2017-01-0145
Edward Palmer, Wilko Jansen
Abstract In order to specify a brake system that will have robust performance over the entire range of expected vehicle drive cycles it is vital that it has sufficient thermal inertia and dissipation to ensure that component temperatures are kept within acceptable limits. This paper presents a high fidelity CAE (computer aided engineering) technique for predicting the temperature of the front brake and the surrounding suspension components whilst installed on vehicle. To define the boundary conditions the process utilizes a coupled unsteady CFD (computational fluid dynamics) and thermal solver to accurately predict the convective heat transfer coefficients across a range of vehicle speeds. A 1-D model is used to predict the brake energy inputs as well as the vehicle speed-time curves during the drive cycle based on key vehicle parameters including wide-open-throttle performance, drive train losses, rolling resistance, aerodynamic drag etc.
2017-03-28
Technical Paper
2017-01-0664
Mohd Asif, Karl Giles, Andrew Lewis, Sam Akehurst, Niall Turner
Abstract The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
2017-03-28
Journal Article
2017-01-1548
Max Varney, Martin Passmore, Adrian Gaylard
Abstract Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations.
2017-03-28
Journal Article
2017-01-1511
Anton Kabanovs, Graham Hodgson, Andrew Garmory, Martin Passmore, Adrian Gaylard
Abstract The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre.
2017-03-28
Journal Article
2017-01-1543
Jonathan Jilesen, Adrian Gaylard, Jose Escobar
Abstract Vehicle rear and side body soiling has been a concern since the earliest cars. Traditionally, soiling has been seen to be less importance than vehicle aerodynamics and acoustics. However, increased reliance on sensors and cameras to assist the driver means that there are more surfaces of the vehicle that must be kept clean. Failure to take this into consideration means risking low customer satisfaction with new features. This is because they are likely to fail under normal operating conditions and require constant cleaning. This paper numerically investigates features known to have an influence on side and rear face soiling with a demonstration vehicle. These changes include rim design, diffuser strakes and diffuser sharpening. While an exhaustive investigation of these features is beyond the scope of this study, examples of each feature will be considered.
2017-03-28
Technical Paper
2017-01-1529
Nicholas Simmonds, John Pitman, Panagiotis Tsoutsanis, Karl Jenkins, Adrian Gaylard, Wilko Jansen
Abstract Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
2017-03-28
Technical Paper
2017-01-1318
Prashant Khapane, Suresh Bhosale
Abstract Robustness to sand dune impact is one of the key requirements for Jaguar Land Rover products. Historically off road vehicles were built on a ladder sub frame; and the steel cross beam at the front provided robust protection for the cooling pack. With the move to monocoque construction, the cooling pack became vulnerable to low speed grounding damage. Unfortunately this vulnerability is not confirmed until later in the program when fully representative vehicles are available, which results in late engineering changes that are expensive, time consuming and stressful. Like all late changes it is rarely optimised for cost and weight. With no historic literature or procedure available, the challenge was to model the physics of sand media and also solve the complex multi-physics problem of impact of the whole vehicle with the sand dune.
2017-03-28
Journal Article
2017-01-1327
Prashant Khapane, Vivek Chavan, Uday Ganeshwade
Abstract Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
2017-03-28
Journal Article
2017-01-0420
Prashant Khapane, Sumiran Lohani
Abstract Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
2017-03-28
Journal Article
2017-01-0418
Gregory McCann, Prashant Khapane
Abstract An increase in data measurement and recording within vehicles has allowed Anti-lock Braking Systems (ABS) to monitor a vehicle’s dynamic behavior in far more detail. This increased monitoring helps to improve vehicle response in scenarios such as braking whilst cornering and braking on uneven surfaces. The Durability and Robustness (D&R) CAE department within Jaguar Land Rover discovered that the lack of a complex ABS system in virtual vehicle models was contributing to poor lateral and longitudinal loads correlation throughout the suspension and mounting systems. D&R CAE started a project to incorporate Continental’s ABS system, provided by ‘©Continental AG’ for physical JLR vehicles, into SIMPACK virtual vehicles by means of a co-simulation (2017 n.d.). The work involved collaboration between 3 departments in Jaguar Land Rover and ultimately led to implementation of the ABS into the JLR standard automotive virtual database.
2016-09-27
Journal Article
2016-01-8029
Chrysostomos-Alexandros Bekakos, George Papazafeiropoulos, Dan J. O'Boy, Jan Prins, George Mavros
Abstract A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
2016-04-05
Technical Paper
2016-01-0987
Mike M. Lambert, Belachew Tesfa
Abstract Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions.
2016-04-05
Technical Paper
2016-01-1590
Giancarlo Pavia, Martin Passmore, Adrian Gaylard
Abstract Short tapered sections on the trailing edge of the roof, underside and sides of a vehicle are a common feature of the aerodynamic optimization process and are known to have a significant effect on the base pressure and thereby the vehicle drag. In this paper the effects of such high aspect ratio chamfers on the time-dependent base pressure are investigated. Short tapered surfaces, with a chord approximately equal to 4% of the overall model length, were applied to the trailing edges of a simplified passenger car model (the Windsor Body) and base pressure studied via an array of surface pressure tappings. Two sets of configurations were tested. In the first case, a chamfer was applied only to the top or bottom trailing edge. A combination of taper angles was also considered. In the second case, the chamfer was applied to the side edges of the model base, leaving the horizontal trailing edges squared.
2016-04-05
Technical Paper
2016-01-1578
Nicholas Simmonds, Panagiotis Tsoutsanis, Dimitris Drikakis, Adrian Gaylard, Wilko Jansen
Abstract Simulations are presented which fully couple both the aerodynamics and cooling flow for a model of a fully engineered production saloon car (Jaguar XJ) with a two-tier cooling pack. This allows for the investigation of the overall aerodynamic impact of the under-hood cooling flow, which is difficult to predict experimentally. The simulations use a 100 million-element mesh, surface wrapped and solved to convergence using a commercially available RANS solver (STARCCM+). The methodology employs representative boundary conditions, such as rotating wheels and a moving ground plane. A review is provided of the effect of cooling flows on the vehicle aerodynamics, compared to published data, which suggest cooling flow accounts for 26 drag counts (0.026 Cd). Further, a sensitivity analysis of the pressure drop curves used in the porous media model of the heat exchangers is made, allowing for an initial understanding of the effect on the overall aerodynamics.
2016-04-05
Technical Paper
2016-01-1604
Anton Kabanovs, Max Varney, Andrew Garmory, Martin Passmore, Adrian Gaylard
Abstract This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
2016-04-05
Journal Article
2016-01-1601
David C. Forbes, Gary J. Page, Martin A. Passmore, Adrian P. Gaylard
Abstract In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
2016-04-05
Journal Article
2016-01-1619
Lara Schembri Puglisevich, Adrian Gaylard, Matthew Osborne, Jonathan Jilesen, Adriano Gagliardi
Abstract Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
2016-04-05
Technical Paper
2016-01-0241
Sina Shojaei, Simon Robinson, Andrew McGordon, James Marco
Abstract The power demand of air conditioning in PHEVs is known to have a significant impact on the vehicle’s fuel economy and performance. Besides the cooling power associated to the passenger cabin, in many PHEVs, the air conditioning system provides power to cool the high voltage battery. Calculating the cooling power demands of the cabin and battery and their impact on the vehicle performance can help with developing optimum system design and energy management strategies. In this paper, a representative vehicle model is used to calculate these cooling requirements over a 24-hour duty cycle. A number of pre-cooling and after-run cooling strategies are studied and effect of each strategy on the performance of the vehicle including, energy efficiency, battery degradation and passenger thermal comfort are calculated. Results show that after-run cooling of the battery should be considered as it can lead to significant reductions in battery degradation.
2015-09-06
Technical Paper
2015-24-2463
Christopher Price, Arash Hamzehloo, Pavlos Aleiferis, David Richardson
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Viewing 1 to 30 of 97

Filter

  • Range:
    to:
  • Year: