Viewing 1 to 30 of 37
Technical Paper
Zachary D. Asher, Van Wifvat, Anthony Navarro, Scott Samuelsen, Thomas Bradley
Abstract Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
Journal Article
Roger Brewer
Abstract The value of “ultracapacitors” (also referred to as “supercapacitors” or “electric double layer capacitors” in some literature) as an augmentation device when placed in parallel with “electrochemical” energy storage (i.e. battery) is presented in this paper. Since ultracapacitors possess unique attributes due to their higher value of energy storage density (or Joules/WattHrs per mass) compared to conventional capacitors while maintaining the peak power providing capability (to some degree) typical of conventional capacitors they may provide a near term solution in applications demanding longer battery operating life when placed in parallel. Such demands may be pronounced by the onset of More-Electric-Aircraft peak loads and “cold-crank” Auxiliary Power Unit (APU) electric-starting in demanding cold temperature environments.
Technical Paper
Hussein Youssef
This paper explores the problem of complex safety/security critical software Validation and Verification (V&V). Current methods of V&V, which certify that the software is fit for use, require a significant amount of touch labor - future complex software developments such as NextGen Air Traffic Control will face cost hurdles so high that it may not be deployable. We will take the current V&V technology beyond formal methods (the current state of the art), reducing the V&V problem to an NP-Hard optimization problem solvable by emerging Adiabatic Quantum Computing (AQC) hardware and processing methods. The Quantum V&V (QVV) approach can go beyond software V&V, and can span the entire complex system.
Technical Paper
David E. Burchfield, Wai Tak Lee, William Niu, Andrew Pargellis, George Steiner, William O'Hara, John F. Lewis
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper
Brian M. Sutin, William Niu, George Steiner, William O'Hara, John F. Lewis
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper
Julie A. Levri, John A. Hogan, Bruce Deng, Jon Welch, Mike Ho
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Journal Article
Barbara A. Romig, Charles S. Allton, Harry L. Litaker
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Technical Paper
K. McCarthy, E. Walters, A. Heltzel, R. Elangovan, G. Roe, W. Vannice, C. Schemm, J. Dalton, S. Iden, P. Lamm, C. Miller, A. Susainathan
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Journal Article
Keith Bridger, Arthur Cooke, Walter Schulze, James Weigner, Scott Sentz, Mike Stewart, Frank Duva
This paper describes the development of a lead free, high temperature ceramic capacitor material having the base composition of (Na0.5 Bi0.5) TiO3. The goal is to modify this structure to create a material that has the relative permittivity of barium titanate with extended X7R-like properties to 250°C - an X14R. After an extensive compositional and theoretical modeling investigation a composition was selected and capacitors developed. The dielectric has a 1-kHz relative permittivity of ∼1200 with <±15% variation from -25 to +250°C and <5% loss from -55 to +250°C. These capacitors also have very low voltage coefficients, indeed they are positive at the low end of the temperature range, resulting in a combined TC-Vc capacitance variation 0%/-25% of nominal from -55 to +200°C with applied voltage stress from 20 to 260 V/mil.
Technical Paper
James F. Russell, John F. Lewis
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Journal Article
David E. Burchfield, William Niu, George Steiner, William O'Hara, John F. Lewis
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper
Bernadette Luna, James Podolske, David Ehresmann, Jeanie Howard, Louis J. Salas, Lila Mulloth, Jay Perry
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper
James F. Russell, Robyn L. Carrasquillo
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper
Sherry S. Thaxton, Andrew F. J. Abercromby, Elizabeth A. Onady, Sudhakar L. Rajulu
A preliminary assessment of the reach envelope and field of vision (FOV) for a subject wearing a Mark III space suit was requested for use in human-machine interface design of the Science Crew Operations and Utility Testbed (SCOUT) vehicle. The reach and view of two suited and unsuited subjects were evaluated while seated in the vehicle using 3-dimensional position data collected during a series of reaching motions. Data was interpolated and displayed in orthogonal views and cross-sections. Compared with unsuited conditions, medio-lateral reach was not strongly affected by the Mark III suit, whereas vertical and antero-posterior reach were inhibited by the suit. Lateral FOV was reduced by approximately 40° in the suit. The techniques used in this case study may prove useful in human-machine interface design by providing a new means of developing and displaying reach envelopes.
Technical Paper
R. J. Bucci, M. A. James, H. Sklyut, M. B. Heinimann, D. L. Ball, J. K. Donald
Significant system efficiency gains can be achieved in high-performance aircraft via a unitized structure that reduces parts count. For instance, reduced parts count leads to substantial engineering logistic cost savings through higher levels of subsystem and mounting hardware integration. It also creates performance benefits by eliminating structural connections. Residual stress management, however, remains a major obstacle to capturing full benefits and broadening the application of unitized structure solutions. This paper describes how Alcoa and others are developing tools to overcome limitations in current testing, evaluation, and design practices attributed to residual stress effects. The authors present recent advancements in fracture toughness and fatigue crack growth characterization, along with a new, integrated approach for improved accounting of residual stress effects during fracture critical component design, manufacturing planning, and life management.
Technical Paper
Jeffrey Ferketic, Loel Goldblatt, Edward Hodgson, Sean Murray, Robert Wichowski, Arthur Bradley, Terrence Fong, Wendell Chun, Randy Stiles, John Evans, Michael Goodrich, Aaron Steinfeld
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper
S. J. French, G. L. Cramp
The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. For these missions several food provisioning strategies are being investigated. Individual, prepackaged meals may be provided throughout the mission or commodities may be taken in bulk and processed while on the planetary surface. To enable these different supply scenarios, a packaging system must be developed that will protect the food or commodity and have minimal impact on system mass. Metric values for a prepackaged scenario and a bulk supply scenario, using current packaging material technologies, were compared. The results of this comparison show that bulk packaging penalties will potentially be more than an order of magnitude less than those of a prepackaged food system.
Technical Paper
S. J. French
A comparison of resource cost was made between processed peanut oil and a bulk supply of peanut oil within a reference menu using nominal yield values from literature and equivalency factors from the Exploration Life Support (ELS) Baseline Values and Assumptions Document (BVAD). Results of the comparison show a potential mass savings of up to 496.3 kg if a bulk supply of oil were to replace processed peanut oil within identified recipes. Direct comparison of processed peanut oil and bulk oil commodities shows the cost-to-launch value for processed peanut oil will be 3.2 times greater than a bulk supply. This replacement would also remove 164.4 kg of solid waste generated through peanut processing. These values and the general versatility of a bulk supply of oil indicate that recipes under the bulk commodity supply scenario should use a variety of oils.
Technical Paper
R. Morency, M. Ferrer, M. Jaramillo, L. Gonzalez, S. Margerum, L. Velasquez, S. Rajulu
A method for capturing full-body scans for the purpose of extracting Extravehicular Activity (EVA) suit measurements is being evaluated. Subjects were marked using reflective spheres enabling researchers to acquire all 118 measurements of the suit sizing protocol. Several researchers measured the subjects using a full-body laser scanner, a motion analysis system, and standard anthropometrical equipment. The linear scanner measurements were compared to the motion analysis data, while the circumferential scanner measurements were compared to the manual data. The mean percent difference between the scanner measurements and motion analysis linear/manual circumferential measurements was 4.21%. It was concluded that the scanner measurements were accurate enough for preliminary sizing of EVA suits.
Technical Paper
Norman I. Badler, Jan Allbeck, Seung-Joo Lee, Richard J. Rabbitz, Timothy T. Broderick, Kevin M. Mulkern
The earliest Digital Human Modeling systems were non-interactive analysis packages with crude graphics. Next generation systems added interactivity and articulated kinematic human models. The newest systems use real-time computer graphics, deformable figures, motion controllers, and user interfaces. Our long-term goal is to free the user as much as possible from interactive human model manipulation through direct understanding and execution of task instructions. We present a next generation DHM testbed that includes a scriptable interface, real-time collision-avoidance reach, empirical joint motion models, a versatile locomotion engine, motion capture and synthetic motion blends and combinations, and a smooth skinned scalable human model.
Technical Paper
Marla D. Potess, Ken Rainwater, Dean Muirhead
Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled “Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications.” Two households within the colonia were demonstration sites for the constructed wetlands.
Technical Paper
Scott Young
The Carbon Dioxide Removal Assembly (CDRA) on board the International Space Station (ISS) has experienced periodic check valve and selector valve failures as a result of a gradual build-up of contamination from particles that have breeched the adsorbent bed seals. The current software that controls CDRA has limitations that make troubleshooting the unit difficult in these situations, in large part due to the fact that valve position telemetry is only available during certain times. There are also situations where it is required to perform operations manually that would benefit from added code logic and commands to facilitate these operations. The software has been reviewed for possible upgrades and changes that will allow engineers to better troubleshoot the unit in the event of various failures and also allow for better operability in degraded states.
Technical Paper
John Feighery, Ivan Cavenall, Amanda Knight
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
Technical Paper
Benton C. Clark
Total sample containment is an absolute requirement for Mars sample return missions, derived from the requirement to protect against uncontrolled introduction of potentially hazardous foreign material into the earth's biosphere. These constraints of planetary protection comprise one of the major remaining hurdles to low cost implementation of sample return missions. It is suggested here that to spread the costs of the program, the first mission should consider sterilizing the samples and canister surfaces while still in space during the return to Earth.
Technical Paper
Molly S. Anderson, Frank Jeng
A dynamic simulation of the ISS CDRA hardware was created using the Aspen Custom Modeler software platform. The dynamic model calculates the material and energy balances that describe the system properties. The model was calibrated by comparison to test data results from a flight-like CDRA at NASA Marshall Space Flight Center. While other FORTRAN models of the CDRA already exist, developing an ACM simulation is the first step towards creating a generic tool to simulate larger collections of life support hardware. The ACM tool should make it possible to be very flexible when rearranging these models to simulate possible configurations of the life support subsystems that could be used in the future, especially for advanced life support applications.
Technical Paper
Louis J. Glaab, Mohammad A. Takallu
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a “glass display” that also included advanced flight symbology, such as a velocity vector.
Technical Paper
Cory K. Finn, Karen E. Meyers, Bruce Duffield
The BIO-Plex facility will need to support a variety of life support system designs and operational strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth.
Technical Paper
James C. Maida, L. Javier Gonzalez, Sudhakar Rajulu, Erica Miles
To work outside a space craft, humans must wear a protective suit. The required suit pressurization creates additional resistance for the wearer while performing work. How much does the suit effect work and fatigue? To answer these questions, dynamic torque was collected for the shoulder, elbow and wrist for six subjects in an Extra-vehicular Mobility Unit (EMU). In order to quantify fatigue, the subjects were to exert maximum voluntary torque for five minutes or until their maximum fell below 50% of their initial maximum for three consecutive repetitions. Using the collected torque and time data, logarithmic based functions were derived to estimate torque decay to within an absolute error of 20%. These results will be used in the development of a generalized tool for prediction of maximum available torque over time for humans using the current EMU.
Technical Paper
Bonnie P. Dalton, Karen Plaut, Gabrielle B. Meeker
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Technical Paper
Tico Foley, Robert G. Brown, Eddie Burrell, Dominic Del Rosso, Kumar Krishen, Harold Moffitt, Evelyne Orndoff, Beatrice Santos, Melissa Butzer, Rajib Dasgupta, Marilyn Jones, Frederick Herrera, Gary Vincent
Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.
Viewing 1 to 30 of 37


  • Range:
  • Year: