Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 22 of 22
2017-03-28
Technical Paper
2017-01-0761
Christopher W. Gross, Rolf Reitz
Abstract In an attempt to increase efficiency and lower critical and highly regulated emissions (i.e., NOx, PM and CO2) many advanced combustion strategies have been investigated. Most of the current strategies fall into the category of low temperature combustion (LTC), which allow emissions mandates to be met in-cylinder along with anticipated reduction in cost and complexity. These strategies, such as homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI), partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI), use early injection timings, resulting in a highly lean charge with increased specific heat ratios to improve thermal efficiency and reduce PM emissions. Lower combustion temperatures also avoid the activation of NOx formation reactions.
2015-04-14
Technical Paper
2015-01-0885
Mark B. Murphy, John J. Moskwa
Abstract This paper details the development of a new dynamic Intake Air Simulator (IAS) for use on single-cylinder test engines, where the gas dynamics are controlled to accurately simulate those on a multi-cylinder engine during transient or steady-state operation. The third generation of Intake Air Simulators (IAS3) continues a development of new technology in the Powertrain Control Research Laboratory (PCRL) that replicates the multi-cylinder engine instantaneous intake gas dynamics on the single-cylinder engine, as well as the control of other boundary conditions. This is accomplished by exactly replicating the intake runner geometry between the plenum and the engine intake valve, and dynamically controlling the instantaneous plenum pressure feeding that runner, to replicate the instantaneous multi-cylinder engine intake flow.
2015-04-14
Technical Paper
2015-01-0794
Zongyu Yue, Randy Hessel, Rolf D. Reitz
Abstract The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
2015-04-14
Technical Paper
2015-01-1060
Yangdongfang Yang, Gyubaek Cho, Christopher Rutland
Abstract The SCR Filter simultaneously reduces NOx and Particle Matter (PM) in the exhaust and is considered an effective way to meet emission regulations. By combining the function of a Diesel Particulate Filtration (DPF) and a Selective Catalytic Reduction (SCR), the SCR Filter reduces the complexity and cost of aftertreatment systems in diesel vehicles. Moreover, it provides an effective reaction surface and potentially reduces backpressure by combining two devices into one. However, unlike traditional flow through type SCR, the deNOx reactions in the SCR Filter can be affected by the particulate filtration and regeneration process. Additionally, soot oxidation can be affected by the deNOx process. A 1-D kinetic model for integrated DPF and NH3-SCR system over Cu-zeolite catalysts was developed and validated with experimental data in previous work[1].
2013-04-08
Technical Paper
2013-01-0279
Derek Splitter, Martin Wissink, Dan DelVescovo, Rolf D. Reitz
The present experimental study explored methods to obtain the maximum practical cycle efficiency with Reactivity Controlled Compression Ignition (RCCI). The study used both zero-dimensional computational cycle simulations and engine experiments. The experiments were conducted using a single-cylinder heavy-duty research diesel engine adapted for dual fuel operation, with and without piston oil gallery cooling. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOx and PM emissions in-cylinder, while simultaneously realizing gross indicated thermal efficiencies in excess of 56%. The present study considered RCCI operation at a fixed load condition of 6.5 bar IMEP an engine speed of 1,300 [r/min]. The experiments used a piston with a flat profile with 18.7:1 compression ratio.
2013-04-08
Technical Paper
2013-01-1099
Jessica Brakora, Rolf D. Reitz
A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
2013-04-08
Technical Paper
2013-01-1652
Martin Wissink, Zhi Wang, Derek Splitter, Arsham Shahlari, Rolf D. Reitz
This study uses Fourier analysis to investigate the relationship between the heat release event and the frequency composition of pressure oscillations in a variety of combustion modes. While kinetically-controlled combustion strategies such as HCCI and RCCI offer advantages over CDC in terms of efficiency and NOX emissions, their operational range is limited by audible knock and the possibility of engine damage stemming from high pressure rise rates and oscillations. Several criteria such as peak pressure rise rate, ringing intensity, and various knock indices have been developed to quantify these effects, but they fail to capture all of the dynamics required to form direct comparisons between different engines or combustion strategies. Experiments were performed with RCCI, HCCI, and CDC on a 2.44 L heavy-duty engine at 1300 RPM, generating a significant diversity of heat release profiles.
2013-04-08
Journal Article
2013-01-1653
Reed Hanson, Scott Curran, Robert Wagner, Rolf D. Reitz
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
2013-04-08
Technical Paper
2013-01-1661
Christopher Kolodziej, Martin Wissink, Derek Splitter, Reed Hanson, Rolf D. Reitz, Jesus Benajes
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
2013-04-08
Technical Paper
2013-01-1197
Justin Madsen, Andrew Seidl, Dan Negrut
This paper discusses the development of a novel deformable terrain database and its use in a co-simulation environment with a multibody dynamics vehicle model. The implementation of the model includes a general tire-terrain traction model which is modular to allow for any type of tire model that supports the Standard Tire Interface[1] to operate on the terrain. This allows arbitrarily complex tire geometry to be used, which typically has a large impact on the mobility performance of vehicles operating on deformable terrains. However, this gain in generality comes at the cost that popular analytical pressure-sinkage terramechanics models cannot be used to find the normal pressure and shear stress of the contact patch. Pressure and shear stress are approximated by combining the contributions from tire normal forces, shear stresses and bulldozing forces due to soil rutting.
2012-04-16
Technical Paper
2012-01-1336
Bishwadipa Das Adhikary, Youngchul Ra, Rolf D. Reitz, Stephen Ciatti
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
2012-04-16
Journal Article
2012-01-0417
Aaron Gander, John Moskwa
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
2012-04-16
Technical Paper
2012-01-0134
Hu Wang, Rolf D. Reitz, Mingfa Yao
This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
2012-04-16
Journal Article
2012-01-0375
Sage Kokjohn, Rolf D. Reitz, Derek Splitter, Mark Musculus
Premixed charge compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions with diesel-like efficiency. However, these strategies are generally confined to low loads due to inadequate control of combustion phasing and heat-release rate. One PCI strategy, dual-fuel reactivity-controlled compression ignition (RCCI), has been developed to control combustion phasing and rate of heat release. The RCCI concept uses in-cylinder blending of two fuels with different auto-ignition characteristics to achieve controlled high-efficiency clean combustion. This study explores fuel reactivity stratification as a method to control the rate of heat release for PCI combustion. To introduce fuel reactivity stratification, the research engine is equipped with two fuel systems. A low-pressure (100 bar) gasoline direct injector (GDI) delivers iso-octane, and a higher-pressure (600 bar) common-rail diesel direct-injector delivers n-heptane.
2012-04-16
Technical Paper
2012-01-0383
Derek Splitter, Martin Wissink, Sage Kokjohn, Rolf D. Reitz
The present experimental study explores the effects of compression ratio and piston design in a heavy-duty diesel engine operated with Reactivity Controlled Compression Ignition (RCCI) combustion. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing high thermal efficiencies. The present study consists of RCCI experiments at loads from 4 to 17 bar indicated mean effective pressure at engine speeds of 1,300 and 1,700 [rev/min]. The experiments used a modified piston to examine the effect of piston crevice volume, squish geometry, and compression ratio on performance and efficiency.
2011-09-13
Technical Paper
2011-01-2194
Jonathan L Breen, Glenn Bower
The normal approach to shifting a manual transmission in a vehicle includes a clutch which connects the engine to the transmission. When shifting, the relative speed of the engine and wheels changes. The transmission is disconnected from the engine with the clutch and the gears in the transmission are pressed together until they engage. There are small friction synchronizers inside the transmission, but these are only designed for the inertia of the gears and the clutch pressure plate. The clutch is required to synchronize the transmission speed with the engine speed after a shift, and to remove the load from the transmission before a shift. Described is a method for automating a manual transmission hybrid-electric powertrain which doesn't require a clutch. A hybrid drivetrain including an electric motor and a combustion engine has the benefit of much better speed and torque control than a combustion engine alone.
2011-09-11
Journal Article
2011-24-0007
Jian Gao, Mario F. Trujillo, Suraj Deshpande
The interaction of fuel sprays with in-cylinder air flow is crucially important for the mixture preparation and subsequent combustion processes in gasoline direct injection (GDI) engines. In the present work, the experimentally validated computational fluid dynamics (CFD) simulations are performed to study the dynamics and physical insight of hollow-cone sprays interacting with a uniform crossflow. The basis of the model is the standard Reynolds-averaged Navier-Stokes (RANS) approach coupled to the Lagrangian treatment for statistical groups (parcels) representing the physical droplet population. The most physically suitable hybrid breakup models depicting the liquid sheet atomization and droplet breakup processes based on the linear instability analysis and Taylor analogy theory (LISA-TAB) are used. Detailed comparisons are made between the experiments and computations in terms of spray structure, local droplet diameter and velocity distributions.
2011-04-12
Technical Paper
2011-01-0386
Yue Wang, Won Geun Lee, Rolf D. Reitz, Ramachandra Diwakar
High-pressure diesel sprays were simulated with an Eulerian-Lagrangian Spray and Atomization (ELSA) model, based on a multidimensional engine computational fluid dynamics (CFD) code KIVA-3V. The atomization of the dense liquid core in the near-nozzle region was modeled with turbulent mixing of the diesel fuel with the ambient gas. Under the continuum assumption of a fuel-air mixture in this region, two transport equations were solved for the liquid mass fraction and liquid surface area density. At a certain downstream location where the spray became dilute, a switch from the Eulerian to the Lagrangian approach was made to benefit from the advantages of the conventional Lagrangian droplet models, such as droplet collision and turbulent dispersion modeling. The droplet size and velocity to be initialized at this switch were determined by the local CFD cell properties.
2011-04-12
Journal Article
2011-01-0815
Nicholas Rakovec, Sandeep Viswanathan, David E. Foster
An investigation of the permeability evolution of a diesel particulate filter channel wall as a function of soot loading was conducted. This investigation examined the effects of varying particle characteristics and two filtration velocities (4 and 8 cm/s) on the wall permeability throughout a 1 g/L soot loading. This study was possible using the Diesel Exhaust Filtration Analysis (DEFA) system that was modified to perform temperature controlled in-situ flow tests. The DEFA system allows for isolation of the pressure drop due to the filter wall and soot cake layer greatly simplifying the permeability calculation. Permeability evolution fundamentals and the effects of loading conditions were studied by filling 18 filters with the DEFA system. The filters were loaded using one of four operating conditions of a single-cylinder heavy-duty diesel engine. These operating conditions were comprehensively characterized giving insight into the effects of varying particle characteristics.
2010-10-25
Technical Paper
2010-01-2206
Scott Curran, Vitaly Prikhodko, Kukwon Cho, C. Scott Sluder, James Parks, Robert Wagner, Sage Kokjohn, Rolf D. Reitz
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
2010-10-25
Technical Paper
2010-01-2107
Ettore Musu, Riccardo Rossi, Roberto Gentili, Rolf D. Reitz
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
2010-04-12
Journal Article
2010-01-0032
Hamid Ansari, Martin Tupy, Makarand Datar, Dan Negrut
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Viewing 1 to 22 of 22

    Filter

    • Range:
      to:
    • Year: