Criteria

Text:
Display:

Results

Viewing 1 to 30 of 1170
2012-04-16
Technical Paper
2012-01-0694
Binbin Yang, Shanju Li, Zunqing Zheng, Mingfa Yao, Wai Cheng
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
2012-04-16
Journal Article
2012-01-0689
Masaaki Kono, Masatoshi Basaki, Masaharu Ito, Takeshi Hashizume, Shinobu Ishiyama, Kazuhisa Inagaki
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
2012-04-16
Technical Paper
2012-01-0690
Salih Manasra, Dieter Brueggemann
This work capitalizes on the investigation of the effect of split injection on the combustion and in-cylinder soot formation performance of low Compression Ratio GTL-fueled DI diesel engine. An optically-accessed Rapid Compression Machine was deployed allowing the application of optical diagnostics. A shadowgraph imaging was used to analyze spray development and detect ignition zones while imaging of soot incandescence was used to determine the temporal and spatial development of soot. In addition the rate of heat release was calculated for the analysis of the combustion characteristics. It has been found that split injection shortens sprays length while increases their penetration velocity. It alters the combustion from fully premixed to two-mode, premixed and non-premixed. Soot with split injection was, therefore, significantly larger while combustion noise was reduced by factor of 4.
2012-04-16
Journal Article
2012-01-0691
Matthew Blessinger, Joshua Stein, Jaal Ghandhi
Reactivity controlled compression ignition combustion was investigated for three fuel combinations: isooctane-diesel, PRF90-diesel, and E85-diesel. Experiments were conducted at 1200 rpm, 160 kPa absolute intake pressure, and fixed total fuel energy using ‘optimal’ operating condition for each fuel combination that were chosen based on combustion performance from SOI timing and premixed energy fraction sweeps. The heat release duration was found to scale with the difference in reactivity between the premixed and direction injected fuel; a small difference gives rise to short heat release duration, similar to that of HCCI combustion. Conversely, as the difference increases, the heat release period lengthens. The high-speed optical data confirmed that the combustion occurred in a staged manner from the high-reactivity zones, which were located at the periphery of the chamber, to low-reactivity zones in the field of view.
2012-04-16
Journal Article
2012-01-0692
Benjamin Petersen, Paul C. Miles, Dipankar Sahoo
The performance of Partially Premixed Compression Ignition (PPCI) combustion relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. In fact, the mixture distribution has direct control over the engine-out emissions as well as the rate of heat release during combustion. The current study focuses on investigating the pre-combustion equivalence ratio distribution in a light-duty diesel engine operating at a low-load (3 bar IMEP), highly dilute (10% O₂), slightly boosted (P ⁿ = 1.5 bar) PPCI condition. A tracer-based planar laser-induced fluorescence (PLIF) technique was used to acquire two-dimensional equivalence ratio measurements in an optically accessible diesel engine that has a production-like combustion chamber geometry including a re-entrant piston bowl.
2012-04-16
Journal Article
2012-01-0685
Radu Florea, Kan Zha, Xin Yu, Marcis Jansons, Dinu Taraza, Naeim Henein
As a result of recent focus on the control of Low Temperature Combustion (LTC) modes, dual-fuel combustion strategies such as Reactivity Controlled Compression Ignition (RCCI) have been developed. Reactivity stratification of the auto-igniting mixture is thought to be responsible for the increase in allowable engine load compared to other LTC combustion modes such as Homogenous Charge Compression Ignition (HCCI). The current study investigates the effect of ethanol intake fuel injection on in-cylinder formaldehyde formation and stratification within an optically accessible engine operated with n-heptane direct injection using optical measurements and zero-dimensional chemical kinetic models. Images obtained by Planar Laser Induced Fluorescence (PLIF) of formaldehyde using the third harmonic of a pulsed Nd:YAG laser indicate an increase in formaldehyde heterogeneity as measured by the fluorescence signal standard deviation.
2012-04-16
Technical Paper
2012-01-0684
Hadeel Solaka, Ulf Aronsson, Martin Tuner, Bengt Johansson
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
2012-04-16
Technical Paper
2012-01-0687
Patrick Borgqvist, Per Tunestal, Bengt Johansson
Partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective of this study is investigation of the low load limitations with gasoline fuels with octane numbers RON 69 and 87. Measurements with diesel fuel were also taken as reference. The experimental engine is a light duty diesel engine equipped with a fully flexible valve train system. Trapped hot residual gases using negative valve overlap (NVO) is the main parameter of interest to potentially increase the attainable operating region of high octane number gasoline fuels.
2012-04-16
Journal Article
2012-01-0686
William F. Northrop, Alejandro Plazas Torres, Patrick Szymkowicz
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
2012-04-16
Technical Paper
2012-01-0681
Jeongwoo Lee, Seungmok Choi, Junyong Lee, Seunghyup Shin, Seunghyun Lee, Han Ho Song, Kyoungdoug Min, Hoimyung Choi
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
2012-04-16
Technical Paper
2012-01-0680
David Six, Tom Van Herzele, Lieven Vervaeke, Marc Bastiaen, Jonas Galle, Roger Sierens, Sebastian Verhelst
Medium speed diesel engines are well established today as a power source for heavy transport and stationary applications and it appears that they will remain so in the future. However, emission legislation becomes stricter, reducing the emission limits of various pollutants to extremely low values. Currently, many techniques that are well established for automotive diesel engines (common rail, after treatment, exhaust gas recirculation - EGR, …) are being tested on these large engines. Application of these techniques is far from straightforward given the different requirements and boundary conditions (fuel quality, durability, …). This paper reports on the development and experimental results of cooled, high pressure loop EGR operation on a 1326kW four stroke turbocharged medium speed diesel engine, with the primary goal of reducing the emission of oxides of nitrogen (NOx). Measurements were performed at various loads and for several EGR rates.
2012-04-16
Technical Paper
2012-01-0683
William De Ojeda, Yu Zhang, Kelvin Xie, Xiaoye Han, Meiping Wang, Ming Zheng
Diesel aided by gasoline low temperature combustion offers low NOx and low soot emissions, and further provides the potential to expand engine load range and improve engine efficiency. The diesel-gasoline operation however yields high unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions. This study aims to correlate the chemical origins of the key hydrocarbon species detected in the engine exhaust under diesel-gasoline operation. It further aims to help develop strategies to lower the hydrocarbon emissions while retaining the low NOx, low soot, and efficiency benefits. A single-cylinder research engine was used to conduct the engine experiments at a constant engine load of 10 bar nIMEP with a fixed engine speed of 1600 rpm. Engine exhaust was sampled with a FTIR analyzer for speciation investigation.
2012-04-16
Technical Paper
2012-01-0682
Henrik W. R. Dembinski, Hans-Erik Angstrom
Spray and mixture formation in a compression-ignition engine is of paramount importance in the diesel combustion process. In an engine transient, when the load increases rapidly, the combustion system needs to handle low λ operation without producing high NOx emissions and large amounts of particulate matter. By changing the in-cylinder flow, the emissions and engine efficiency are affected. Optical engine studies were therefore performed on a heavy-duty engine geometry at different fuel injection pressures and inlet airflow characteristics. By applying different inlet port designs and valve seat masking, swirl and tumble were varied. In the engine tests, swirl number was varied from 2.3 to 6.3 and the injection pressure from 500 to 2500 bar. To measure the in-cylinder flow around TDC, particle image velocimetry software was used to evaluate combustion pictures. The pictures were taken in an optical engine using a digital high-speed camera.
2012-04-16
Technical Paper
2012-01-0677
Junseok Chang, Gautam Kalghatgi, Amer Amer, Yoann Viollet
More stringent emissions standards along with higher fuel economy demands have obliged auto makers to develop technical solutions that exploit synergistic features from gasoline and diesel engines. To minimize NOx and soot trade-off, diesel powertrain has been developed to adopt increasingly complex and expensive technology such as extremely high pressure fuel injection systems, low pressure EGR, and variable valve timing. These attempts are associated with promoting Partially Premixed Charge Compression Ignition (PPC-CI) combustion via increasing mixing time and ignition delay. Alternatively, PPC-CI combustion can be achieved easier by using fuels with higher resistance to auto-ignition than conventional diesel fuel. Previous work has demonstrated the possibility of reducing the cost of future diesel after-treatment systems by using gasoline-like fuels.
2012-04-16
Technical Paper
2012-01-0676
Felipe Castillo, Emmanuel Witrant, Luc Dugard
To meet the new engine regulations, increasingly sophisticated engine alternative combustion modes have been developed in order to achieve simultaneously the emission regulations and the required engine drivability. However, these new approaches require more complex, reliable and precise control systems and technologies. The 0-D model based control systems have proved to be successful in many applications, but as the complexity of the engines increases, their limitations start to affect the engine control performance. One of the 0-D modeling limitations is their inability to model mass transport time. 1-D modeling allows some of the 0-D models limitations to be overcome, which is the motivation of this work. In this paper, two quasi-steady outflow boundary models are developed: one is based on the isentropic contraction and the other on a momentum conservation approach. Both are compared with computational fluid dynamics (CFD) 3-D simulations.
2012-04-16
Technical Paper
2012-01-0679
Carlo Beatrice, Chiara Guido, Valentina Fraioli, Marianna Migliaccio
The present paper describes an experimental and numerical study on the effect of the nozzle flow number (FN) on the full load performance of a modern Euro5 diesel automotive engine, in terms of torque, efficiency and exhaust emissions. The improvement of the diesel engine performance requires a continuous development of the engine components, first of all the injection system and in particular the nozzle design. One of the most crucial factors affecting performance and emissions is the nozzle flow number and its influence becomes more and more important as high performance and low emissions are continuous requirements. Indeed, reducing the nozzle flow number, due to an increase of spray-air mixing, an improvement in PM-NOx trade-off is generally expectable. On the other hand, at full load, where peak firing pressure and exhaust valve temperature become the limiting factors, critical operating conditions can be easily reached reducing the nozzle hole diameter.
2012-04-16
Journal Article
2012-01-0678
Sanghoon Kook, Lyle M. Pickett
Future fuels will come from a variety of feed stocks and refinement processes. Understanding the fundamentals of combustion and pollutants formation of these fuels will help clear hurdles in developing flex-fuel combustors. To this end, we investigated the combustion, soot formation, and soot oxidation processes for various classes of fuels, each with distinct physical properties and molecular structures. The fuels considered include: conventional No. 2 diesel (D2), low-aromatics jet fuel (JC), world-average jet fuel (JW), Fischer-Tropsch synthetic fuel (JS), coal-derived fuel (JP), and a two-component surrogate fuel (SR). Fuel sprays were injected into high-temperature, high-pressure ambient conditions that were representative of a practical diesel engine. Simultaneous laser extinction measurement and planar laser-induced incandescence imaging were performed to derive the in-situ soot volume fraction.
2012-04-16
Technical Paper
2012-01-0672
Haitham Mezher, Jérôme Migaud, David Chalet, Vincent Raimbault, Pascal Chesse, Bernhard Huurdeman
A new methodology for modeling engine intake has been presented; it is based on a transfer function relating pressure response and mass flow rate that makes use of the corresponding frequency spectrum obtained on the so-called “dynamic flow bench”. This new approach provides a way to obtain fast and robust results, which take into account all the phenomena inherent to compressible unsteady flows. Recently the potential of this method has been explored by incorporating it in a GT-Power model to produce a coupled frequency - time domain simulation of a naturally aspirated engine. The method exhibited promising results. One strategy utilized to combat the increasingly stringent emissions standards and reduce fuel consumption is to employ downsized turbocharged engines equipped with charge air coolers (CAC). Therefore, research and development must focus not only on naturally aspirated engines but also on turbocharged ones.
2012-04-16
Journal Article
2012-01-0673
Moritz Heinle, Michael Bargende, Hans-Juergen Berner
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
2012-04-16
Technical Paper
2012-01-0674
Maria Adelina Rivas Caicedo, Emmanuel Witrant, Olivier Sename, Pascal Higelin, Christian Caillol
This paper describes an innovative method to estimate the wall losses during the compression and combustion strokes of a gasoline engine using the cylinder pressure measurement. The estimation during the compression and combustion strokes allows to better represent the system during the combustion. A sliding mode observer is derived from a validated 0-D physical engine model and its convergence and stability are proved. The observer is validated using two different engine models: a one zone engine model and a two zones engine model with flame wall interaction. A good agreement between the estimation results and the model reference is observed, showing the interest of using closed loop strategies to estimate the wall losses in a SI engine.
2012-04-16
Technical Paper
2012-01-0675
Gianluca Montenegro, Angelo Onorati, Tarcisio Cerri, Augusto Della Torre
Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of several numerical tools to help engine manufacturers during the prototyping stage. The aid of CFD tools (3D and 1D) can remarkably reduce the duration and the costs of this stage. The need of achieving good accuracy, along with acceptable computational runtime, has given the spur to the development of a geometry based quasi-3D approach. This is designed to model the acoustics and the fluid dynamics of both intake and exhaust system components used in internal combustion engines. Models of components are built using a network of quasi-3D cells based primarily on the geometry of the system. The solution procedure is based on an explicitly time marching staggered grid approach making use of a flux limiter to prevent numerical instabilities.
2012-04-16
Technical Paper
2012-01-0665
Xiao Hu, Shaohua Lin, Scott Stanton
A commonly used physics based electrochemisty model for a lithium-ion battery cell was first proposed by professor Newman in 1993. The model consists of a tightly coupled set of partial differential equations. Due to the tight coupling between the equations and the 2d implementation due to the particle modeling, and thus called pseudo-2d in literature, numerically obtaining a solution turns out to be challenging even for a lot of commercial softwares. In this paper, the VHDL-AMS language is used to solve the set of equations. VHDL-AMS allows the user to focus on the physical modeling rather than numerically solving the governing equations. In using VHDL-AMS, the user only needs to specify the governing equations after spatial discretization. A simulation environment, which supports VHDL-AMS, can then be used to solve the governing equations and also provides both pre- and post- processing tools.
2012-04-16
Technical Paper
2012-01-0666
Kandler Smith, Matthew Earleywine, Eric Wood, Jeremy Neubauer, Ahmad Pesaran
In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle, and charging scenarios. Because worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate calendar degradation for various geographic environments and simplified cycling scenarios. The life model is then applied to analyze complex cycling conditions using battery charge/discharge profiles generated from simulations of plug-in electric hybrid vehicles (PHEV10 and PHEV40) vehicles across 782 single-day driving cycles taken from a Texas travel survey.
2012-04-16
Technical Paper
2012-01-0667
Joern Tinnemeyer
In previous decades, automobile batteries were used to start the car. Now, with stop-start technologies and renewed interest in electric vehicles, automotive battery management systems must be more accurate and sophisticated. Most battery management systems use different correlates (typically, voltage measurements or Coulomb counting) to estimate how much energy remains within the battery. The efficacy of these estimation techniques is sub-optimal because they rely on correlative data sources. Described herein is a novel approach that precisely determines the state of charge for lead-acid and lithium ion batteries by directly measuring the material changes within the battery across different states of charge.
2012-04-16
Technical Paper
2012-01-0671
Tugce Yuksel, Jeremy Michalek
Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in vehicle applications. The effectiveness of thermal management in extending battery life depends on the design of thermal management used as well as the specific battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We examine the case of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design and address the question: How much improvement in battery life can be obtained with passive air cooling? To answer this question, a model is constructed consisting of a thermal model that calculates temperature change in the battery and a degradation model that estimates capacity loss. A driving and storage profile is constructed and simulated in two cities - Miami and Phoenix - which have different seasonal temperatures.
2012-04-16
Technical Paper
2012-01-0659
Meng-Feng Li, Wen Chen, Hai Wu, David Gorski
This work is to propose a new Iterative Learning Observer (ILO)-based strategy for State Of Charge (SOC) estimation. The ILO is able to estimate the SOC in real time while identifying modeling errors and/or disturbances at the same time. An Electrical-Circuit Model (ECM) is adopted to characterize the Lithium-ion battery behavior. The ILO is designed based on this ECM and the stability is proved. Several experiments are conducted and the collected data is used to extract ECM parameters. The effectiveness of the estimated SOCs via ILO is verified by the experimental results. This implies that the ILO-based SOC determination scheme is effective to identify the SOC in real time.
2012-04-16
Journal Article
2012-01-0660
Monika Minarcin, Eric Rask
As batteries become a major component of numerous advanced vehicles, significant efforts have been allocated towards characterizing and estimating battery energy capability over the lifetime of a vehicle. Currently, battery State of Charge (SOC) is one of the primary values used for this characterization; however SOC usage has several issues when implemented in Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), and Plug-In Hybrid Electric Vehicle (PHEV) systems. One of the main issues with reporting battery SOC as a characterization of battery energy capability is that it only gives a percentage of the energy available to the operator. SOC does not accurately represent the true capability or capacity of the battery, and thus fails to account for the impact to capability with respect to battery size, age, and recent operational history.
2012-04-16
Journal Article
2012-01-0663
Robert Spotnitz, Boris Kaludercic, Samir Muzaferija, Milovan Peric, Gaetan Damblanc, Steve Hartridge
The paper presents a simulation approach to Li-Ion batteries based on geometrically resolved electrodes. This means that solid particles and the space occupied by electrolyte are not overlapping but are represented by contiguous, arbitrarily shaped volumes. The solid-electrolyte interface is explicitly resolved and thus allows detailed modeling of electro-chemical processes that are essential for studying performance of the battery cell. Finite volume method is used to solve the equations governing the mass and thermal energy conservation in solid and electrolyte, as well as the distribution of electric potential. The solution domain is discretized in contiguous control volumes of arbitrary polyhedral shape, with conformal interface between solid and fluid regions. Butler-Volmer equation is used to describe the kinetics of solid-electrolyte interface.
2012-04-16
Technical Paper
2012-01-0664
Michinori Ikezoe, Norihiko Hirata, Chika AMEMIYA, Takeshi Miyamoto, Yasuharu Watanabe, Toshiro Hirai, Tetsuo Sasaki
Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. In order to achieve an improved driving range, power performance and dynamic performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and passive-cooled laminated Li-ion battery. Especially Nissan has been emphasizing electric powered technology with a focus on advanced lithium ion battery from 1992. This presentation will introduce the features of Nissan LEAF and its battery technologies.
2012-04-16
Technical Paper
2012-01-0655
Satbir Singh, Shiyu Liu, Hailin Li
The nitrogen dioxide (NO₂) emissions of compression ignition diesel engines are usually relatively small, especially when operated at medium and high loads. Recent experimental investigations have suggested that adding hydrogen (H₂) into the intake air of a diesel engine leads to a substantial increase in NO₂ emissions. The increase in NO₂ fraction in the total NOx is more pronounced at lower engine load than at medium- and high-load operation, especially when a small amount of H₂ is added. However, the chemistry causing the increased NO₂ formation in H₂-diesel dual-fuel engines has not been fully explored. In the present work, kinetics of NO and NO₂ formation in a H₂-diesel dual-fuel engine are investigated using a CFD model integrated with a reduced hydrocarbon oxidation chemistry and an oxides of nitrogen (NOx) formation mechanism. A low-load and a medium-load operating condition are selected for numerical simulations.
Viewing 1 to 30 of 1170

Filter

  • Range:
    to:
  • Year: