Criteria

Text:
Display:

Results

Viewing 1 to 30 of 69
2016-09-20
Technical Paper
2016-01-1986
Qian Li, Balakrishnan Devarajan, Xuning Zhang, Rolando Burgos, Dushan Boroyevich, Pradeep Raj
Abstract The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged.
2016-09-20
Technical Paper
2016-01-1985
Fei Gao, Serhiy Bozhko, Patrick Wheeler
Abstract The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
2016-09-20
Journal Article
2016-01-1988
Rodney Yeu, Jason Wells, Chad Miller, Jane Thompson
Abstract Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
2016-09-20
Journal Article
2016-01-1987
Mingming Yin, Serhiy Bozhko, Seang Shen Yeoh
Abstract The future aircraft electrical power system is expected to be more efficient, safer, simpler in servicing and easier in maintenance. As a result, many existing hydraulic and pneumatic power driven systems are being replaced by their electrical counterparts. This trend is known as a move towards the More-Electric Aircraft (MEA). As a result, a large number of new electrical loads have been introduced in order to power many primary functions including actuation, de-icing, cabin air-conditioning, and engine start. Therefore electric power generation systems have a key role in supporting this technological trend. Advances in modern power electronics allow the concept of starter/generator (S/G) which enables electrical engine start and power generation using the same electrical machine. This results in substantial improvements in power density and reduced overall weight.
2016-09-20
Journal Article
2016-01-1990
Nisha Kondrath, Nathaniel Smith
Abstract In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
2016-09-20
Technical Paper
2016-01-1989
Qiong Wang, Rolando Burgos, Xuning Zhang, Dushan Boroyevich, Adam White, Mustansir Kheraluwala
Abstract In modern aircraft power systems, active power converters are promising replacements for transformer rectifier units concerning efficiency and weight. To assess the benefits of active power converters, converter design and optimization should be carefully done under the operation requirements of aircraft applications: electromagnetic interference (EMI) standards, power quality standards, etc. Moreover, certain applications may have strict limits on other converter specifications: weight, size, converter loss, etc. This paper presents the methodology for performance optimization of different active power converters (active front-ends, isolated DC/DC converters and three-phase isolated converters) for aircraft applications. Key methods for power converter component (e.g. inductors, semiconductor devices, etc.) performance optimization and loss calculation are introduced along with the converter optimization procedure.
2016-09-20
Technical Paper
2016-01-1994
Wei Wu, Yeong-Ren Lin, Louis Chow, Edmund Gyasi, John P. Kizito, Quinn Leland
Abstract For aircraft electromechanical actuator (EMA) cooling applications using forced air produced by axial fans, the main objective in fan design is to generate high static pressure head, high volumetric flow rate, and high efficiency over a wide operating range of rotational speed (1x∼3x) and ambient pressure (0.2∼1 atm). In this paper, a fan design based on a fan diameter of 86 mm, fan depth (thickness) of 25.4 mm, and hub diameter of 48 mm is presented. The blade setting angle and the chord lengths at the leading and trailing edges are varied in their suitable ranges to determine the optimal blade profiles. The fan static pressure head, volumetric flow rate, and flow velocity are calculated at various ambient pressures and rotational speeds. The optimal blade design in terms of maximum total-to-total pressure ratio and efficiency at the design point is obtained via CFD simulation.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Technical Paper
2016-01-1991
Syed J. Khalid
Abstract Aircraft subsystems essential for flight safety and airworthiness, including flight controls, environmental control system (ECS), anti-icing, electricity generation, and starting, require engine bleed and power extraction. Predictions of the resulting impacts on maximum altitude net thrust(>8%), range, and fuel burn, and quantification of turbofan performance sensitivities with compressor bleed, and with both high pressure(HP) rotor power extraction and low pressure(LP) rotor power extraction were obtained from simulation. These sensitivities indicated the judicious extraction options which would result in the least impact. The “No Bleed” system in Boeing 787 was a major step forward toward More Electric Aircraft (MEA) and analysis in this paper substantiates the claimed benefits.
2016-09-20
Technical Paper
2016-01-1979
William D. Bertelsen
Abstract Technology to create a VTOL for general aviation that is fast, efficient, easy to fly, and affordable, has proven elusive. Bertelsen Design LLC has built a large research model to investigate the potential of the arc wing VTOL to fulfill these attributes. The aircraft that is the subject of this paper weighs approximately 145 kg (320 lbs) and features coaxial, dual-rotating propellers, diameter 1.91 m (75 inches). Power is from an MZ 202 two-cycle, two-cylinder engine. Wingspan is 1.82 m (72 inches). The arc wing differentiates this aircraft from previous deflected-slipstream prototypes, which suffered from pitch-trim issues during transition. This paper will present configuration details of the Bertelsen model, showing how it is possible to generate high lift from a short-span wing system. The Bertelsen model can hover out of ground effect using just two arc-wing elements: a main wing and a “slat”.
2016-09-20
Technical Paper
2016-01-1978
Philippe Coni, Sylvain Hourlier, Xavier Servantie, Laurent Laluque, Aude Gueguen
Abstract A 3D Stereoscopic Head-Up Display (HUD) using direct projection on a transparent screen is presented. Symbol incrustation in conformity with the landscape is performed through the use of simulated collimation offering a large eye-box, in excess of conventional HUD. The use of spectral glasses for our transparent screen was decided as most commonly used polarizing or active glasses were not adapted. Furthermore it gave ususeful green laser attack protection.
2016-09-20
Journal Article
2016-01-1981
Luis C. Herrera, Bang-Hung Tsao
One of the main challenges in the power systems of future aircraft is the capability to support pulsed power loads. The high rise and fall times of these loads along with their high power and negative impedance effects will have an undesirable impact on the stability and dc bus voltage quality of the power system. For this reason, studying ways to mitigate these adverse effects are needed for the possible adoption of these type of loads. One of the technologies which can provide benefits to the stability and bus power quality is Energy Storage (ES). This ES is designed with the capability to supply high power at a fast rate. In this paper, the management of the ES to mitigate the effects of pulsed power loads in an aircraft power system is presented. First, the detailed nonlinear model of the power network with pulsed power loads is derived. Due to the large size of this model, a model order reduction is performed using a balanced truncation and a second order approximation.
2016-09-20
Technical Paper
2016-01-1980
Syama M. Rao, Dineshkumar M
Abstract This paper studies admissible state trajectories for an unmanned aerial vehicle(UAV) by performing dynamic soaring technique in the wind gradient. An optimization problem is formulated by employing direct optimal piece wise control. A 3-DOF point mass model system dynamics of UAV is considered. The bank angle and lift co-efficient are identified as control variables. A UAV of mass 5.44kg is considered for this study. Performance measures considered are maximization of specific energy and maximization of specific energy rate extracted by the vehicle, and minimization of the control effort. The effects of linear and parabolic wind gradient on maximizing the specific energy of an autonomous dynamic soaring UAV is also studied and minimum linear gradient required is found. The loop radius of the loiter pattern is maximized for applications like surveillance and patrolling of a localized area along with energy maximization as objective function.
2016-09-20
Technical Paper
2016-01-1984
Michael Krenz
Abstract This paper proposes a method of optimizing aircraft system architectures by considering the efficiencies of each energy conversion step necessary to fulfill the intended function. In addition, these conversion efficiencies need to be evaluated at all critical operating points for the systems involved (e.g. engine, generator, loads, etc.). The methodology starts with examining the energy sources on the aircraft, the energy loads and the energy transfer efficiencies between the sources and the loads. Modern aircraft architecture trends are broadly addressed along with a framework for applying this methodology, but specific aircraft are not analyzed due to the proprietary nature of some of the conversion efficiency data.
2016-09-20
Technical Paper
2016-01-2055
Koji Muraoka, Daisuke Hirabayashi, Masayuki Sato, Yoshihisa Aoki
Abstract JAXA (Japan Aerospace Exploration Agency) has been conducting a research on a future commercial tilt wing VTOL (Vertical TakeOff and Landing) transport under JAXA's "Sky Frontier" Program aiming to develop technologies for aircraft innovation. The research focuses on QTW (Quad Tilt Wing) civil VTOL transport, which features tandem tilt wings with propellers mounted at the mid-span of each wing. The goals of the research in the present phase are to propose a concept of a QTW business VTOL transport system and to pursue the essential technologies development such as OEI (One-Engine-Inoperative) safe recovery, transition flight control and cruise efficient aerodynamic design. Nine passengers business QTW concept was designed and trade-off analysis of the propulsion system architecture for OEI safety was conducted.
2016-09-20
Journal Article
2016-01-1982
Michelle Bash, Steven Pekarek, Jon Zumberge
Abstract The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
2016-09-20
Technical Paper
2016-01-2056
Nikolaus Thorell, Vaibhav Kumar, Narayanan Komerath
Abstract Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
2016-09-20
Technical Paper
2016-01-2058
Thibaut Billard, Cedric Abadie, Bouazza Taghia
Abstract The present paper reports non-electrically intrusive partial discharge investigations on an aeronautic motor. Relevancy, robustness and repeatability of partial discharge testing procedures, both on insulating materials characterization and on operating aeronautic equipment are essential to ensure reliability of the aircraft systems. The aim of this paper is to be the very first step of defining such procedures and the associated test equipment. To do so, the paper will start by providing an understanding of partial discharge phenomena and will review typical more electrical aircraft architecture. Key characteristics causing partial discharge risk to increase will be highlighted. The impact of harness length, high performance power electronics and voltage level increase on insulation system is demonstrated.
2016-09-20
Technical Paper
2016-01-2059
Rolf Loewenherz, Virgilio Valdivia-Guerrero, Daniel Diaz Lopez, Joshua Parkin
Abstract Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
2016-09-20
Journal Article
2016-01-2051
Andreas Himmler, Lars Stockmann, Dominik Holler
Abstract The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Journal Article
2016-01-2053
Orlando Ferrante, Eelco Scholte, Claudio Pinello, Alberto Ferrari, Leonardo Mangeruca, Cong Liu, Christos Sofronis
Abstract Formal Methods, and in particular Model Checking, are seeing an increasing use in the Aerospace domain. In recent years, Formal Methods are now commonly used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. At the system level, Model Checking has seen more limited uses due to the complexity and abstractions needed. In this paper we propose several methods to increase the capability of applying Model Checking to complex Aerospace Systems. An aircraft electrical power system is used to highlight the methodology. Automated model-based methods such as Cone of Influence and Timer Abstractions are described.
2016-09-20
Journal Article
2016-01-2054
Deniz Unlu, Federico Cappuzzo, Olivier Broca, Pierpaolo Borrelli
Abstract This paper presents the activities foreseen on the Leonardo Aircraft Division EIS (Entry In Service) 2020 derivative aircraft performed in the frame of the FP7 European research project TOICA (Thermal Overall Integrated Concept of Aircraft). On board air systems for conventional aircraft are fed by the bleed off-take which penalizes the amount of power available to the turbine of jet or turboprop engines. In order to minimize such operating penalties and optimize the energy efficiency of the overall aircraft, it is of major interest to support trade-offs at aircraft level including aircraft systems as early as possible in the development cycle. The study presents the Virtual Integrated Aircraft methodology and associated simulation activities relying on the system simulation platform LMS Imagine.Lab. This methodology is also relying on concept of flexible model and pyramid of models developed in the context of TOICA.
2016-09-20
Technical Paper
2016-01-2045
Timothy Deppen, Brian Raczkowski, Byoung Kim, Eric Walters, Mark Bodie, Soumya Patnaik
Abstract Model based design is a standard practice within the aerospace industry. However, the accuracies of these models are only as good as the parameters used to define them and as a result a great deal of effort is spent on model tuning and parameter identification. This process can be very challenging and with the growing complexity and size of these models, manual tuning is often ineffective. Many methods for automated parameter tuning exist. However, for aircraft systems this often leads to large parameter search problems since frequency based identification and direct gradient search schemes are generally not suitable. Furthermore, the cost of experimentation often limits one to sparse data sets which adds an additional layer of difficulty. As a result, these search problems can be highly sensitive to the definition of the model fitness function, the choice of algorithm, and the criteria for convergence.
2016-09-20
Technical Paper
2016-01-2046
Neno Novakovic
Abstract A Landing Gear Control and Actuation System (LGCAS) is one of the most complex aircraft systems. Due to the large landing gear masses and high performance requirements, aircraft hydraulic power with multiple hydraulic actuators and valves is used to provide system dynamic. LGCAS also requires a electrical source of energy for the electro-mechanical components, sensors and electronic control unit. For many years, correct fault isolation in a complex kinematic system, such as an aircraft landing gear actuation system, has been a great challenge with limited success. The fault isolation design challenge rests on the fact that landing gear control and actuation system has many so called “passive” components, whose basic function cannot be continuously monitored without additional sensors, transducers, and designated health monitoring equipment.
2016-09-20
Technical Paper
2016-01-2047
K. Suresh, Rajkumar Dhande, Udupi Ananthakrishna Acharya
Abstract Reducing the amount of physical testing is of importance in the aeronautical industry, where each physical test represents a significant cost. Apart from the cost aspect, it may also be difficult or hazardous to carry out physical testing. Specific to the aeronautic industry are also the relatively long development cycles, implying long periods of uncertainty during product development. In any industry a common viewpoint is that of verification, validation, and uncertainty quantification using simulation models are critical activities for a successful development of a product. In Aeronautical application, the design of store's structural equipments needs to be certified in accordance with MIL-T-7743F [1]. This paper focuses on a case study for shock analysis, whereby an attempt has been made to reduce the cost of certification by way of replacing the actual physical testing by a reliable high fidelity FE simulation.
2016-09-20
Technical Paper
2016-01-2050
Martin Espinosa Sanchez, Mario Pérez Millás
Abstract The effect of air pockets in capillaries in terms of pressure variations is investigated experimentally. Pressure sensors in aircraft are often installed separate to the pipes and connected with capillaries to minimise ignition sources within fuel tanks. Trapped air within these capillaries might distort the measurement. These effects are characterised in this paper. Extensive tests with different capillary configurations, trapped air volumes and pressure transients are studied. The data obtained shows that the main effect of trapped air during pressure transients is a delay in the pressure response against its excitation, causing local pressure oscillations around its source value until the pressure is equal in both places again. These oscillations can turn into high pressure peaks under critical conditions. Greater amounts of air can cause greater delays and viceversa.
2016-09-20
Technical Paper
2016-01-2040
Satya Swaroop Panda, Uday Kishore Tammiraju
Abstract Most of the real world problems pose practical challenges for making decisions primarily due to availability of limited data. Quantification of risk and assessment of structural reliability becomes difficult in such scenarios. Techniques for performing safety analysis for such problems are discussed in this paper. While complete characterization of a system behavior may be difficult with limited data of its response, statistical models based on extreme value theory provide the basis for making decisions with reasonable confidence. The same may not be true, however, for such structures early in their design cycle due to limited experience of their performance. In such cases response surface methodology can be very useful in determination of risk and suitably making modifications to the design to improve the reliability of the component or system. Applications of these methods for some real world scenarios are demonstrated.
2016-09-20
Journal Article
2016-01-2042
Chad N. Miller, Michael Boyd
Abstract This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
2016-09-20
Technical Paper
2016-01-2044
Jeffrey J. Joyce, Scott Beecher, Laurent Fabre, Ramesh Rajagopalan
Abstract Over the past few decades, advanced methods have been developed for the analysis of digital systems using mathematical reasoning, i.e., formal logic. These methods are supported by sophisticated software tools that can be used to perform analysis far beyond what is practically achievable using “paper and pencil” analysis. In December 2011, RTCA published RTCA DO-178C [1] along with a set of technical supplements including RTCA DO-333 [2] which provides guidance on the use of formal methods towards the certification of airborne software. Such methods have the potential to reduce the cost of verification by using formal analysis instead of conventional test-based methods to produce a portion of the verification evidence required for certification.
Viewing 1 to 30 of 69

Filter

  • Range:
    to:
  • Year: