Criteria

Text:
Display:

Results

Viewing 1 to 30 of 1496
2016-04-05
Journal Article
2016-01-0644
Syahar Shawal, Martin Goschutz, Martin Schild, Sebastian Kaiser, Marius Neurohr, Juergen Pfeil, Thomas Koch
Abstract This work investigates the image quality achievable with a large-aperture endoscope system and high-speed cameras in terms of detecting the premixed flame boundary in spark-ignited engines by chemiluminescence imaging. The study is an extension of our previous work on endoscopic flame imaging [SAE 2014-01-1178]. In the present work, two different high-speed camera systems were used together with the endoscope system in two production engines to quantify the time-resolved flame propagation. The systems were cinematography with a CMOS-camera, both with and without an intensifier, the latter variation being used in a four-cylinder automotive engine as well as in a single-cylinder motorcycle engine. An algorithm with automatic dynamic thresholding was developed to detect the line-of-sight projected flame boundary despite artifacts caused by the spark and the large dynamic range in image brightness across each time series.
2016-04-05
Journal Article
2016-01-0639
Brian C. Kaul, Benjamin Lawler, Akram Zahdeh
Abstract Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
2016-04-05
Journal Article
2016-01-0640
Alan Kastengren, Daniel Duke, Andrew Swantek, James Sevik, Katarzyna Matusik, Thomas Wallner, Christopher F. Powell
Abstract Understanding the short-lived structure of the plasma that forms between the electrodes of a spark plug is crucial to the development of improved ignition models for SI engines. However, measuring the amount of energy deposited in the gas directly and non-intrusively is difficult, due to the short time scales and small length scales involved. The breakdown of the spark gap occurs at nanosecond time scales, followed by an arc phase lasting a few microseconds. Finally, a glow discharge phase occurs over several milliseconds. It is during the arc and glow discharge phases that most of the heat transfer from the plasma to the electrodes and combustion gases occurs. Light emission can be used to measure an average temperature, but micron spatial resolution is required to make localized measurements.
2016-04-05
Technical Paper
2016-01-0641
Thomas De Cuyper, Sam Bracke, Jolien Lavens, Stijn Broekaert, Kam Chana, Michel De Paepe, Sebastian Verhelst
Abstract To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
2016-04-05
Technical Paper
2016-01-0642
Eric Zanghi, Tian Tian
Understanding oil transport mechanisms is critical to developing better tools for oil consumption and piston skirt lubrication [1]. Our existing Two-Dimensional Laser Induced Fluorescence (2DLIF) system with an acquisition rate of 1 frame every one or two cycles was proven to be effective to display oil accumulation patterns and their evolution over many cycles in the piston ring pack system [2,3,4]. Yet, the existing system is unable to resolve instantaneous oil flow patterns in the piston-liner interface. In this work, a high-speed LIF system was developed. After a number of iterations the finalized high speed LIF system includes a 23 W, 100 kHz, 532 nm laser and a high speed camera capable of 100,000 FPS at 384 × 264 pixel resolution. After each component was selected, optimization of the quality of images taken from the system began.
2016-04-05
Technical Paper
2016-01-0637
Yusheng Wang, David L.S. Hung, Hanyang Zhuang, Min Xu
Abstract The cycle-to-cycle variations of in-cylinder flow field represent a significant challenge which influence the stability, fuel economy, and emissions of engine performance. In this experimental investigation, the high-speed time-resolved particle image velocimetry (PIV) is applied to reveal the flow field variations of a specific swirl plane in a spark-ignition direct-injection engine running under two different swirl air flow conditions. The swirl flow is created by controlling the opening of a control valve mounted in one of the two intake ports. The objective is to quantify the cycle-to-cycle variation of in-cylinder flow field at different crank angles of the engine cycle. Four zones along the measured swirl plane are divided according to the positions of four valves in the cylinder head. The relevance index is used to evaluate the cycle-to-cycle variation of the velocity flow field for each zone.
2016-04-05
Technical Paper
2016-01-0638
Suresh Gadekar, Akhilendra Pratap Singh, Avinash Kumar Agarwal
Abstract In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
2016-04-05
Technical Paper
2016-01-0554
José Galindo, Andrés Tiseira, Roberto Navarro, Daniel Tarí, Hadi Tartoussi, Stéphane Guilain
Abstract 0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
2016-04-05
Technical Paper
2016-01-0553
Akira Miyamoto, Kenji Inaba, Yukiko Obara, Yukie Ishizawa, Emi Sato, Mai Sase, Patrick Bonnaud, Ryuji Miura, Ai Suzuki, Naoto Miyamoto, Nozomu Hatakeyama, Jun Hashimoto, Kazuhiro Akihama
Abstract Suppression or reduction of soot emissions is an important goal in the development of automotive engines for environmental and human health purposes. A better understanding at the molecular level of the formation process of soot particles resulting from collision and aggregation of smaller particles made of Polycyclic Aromatic Hydrocarbon (PAH) is needed. In addition to experiments, computational methods are efficient and valuable tools for this purpose. As a first step in our detailed computational chemistry study, we applied Ultra-Accelerated Molecular Dynamics (UAQCMD) and Canonical Monte-Carlo (CMC) methods to investigate the nucleation process. The UA-QCMD can calculate chemical reaction dynamics 107 times faster than conventional first principle molecular dynamics methods, while CMC can calculate equilibrium properties at various temperatures, pressures, and chemical compositions.
2016-04-05
Technical Paper
2016-01-0558
Christoph Poetsch, Tomaz Katrasnik
Abstract The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
2016-04-05
Technical Paper
2016-01-0555
Federico Millo, Sabino Caputo, Claudio Cubito, Antonella Calamiello, Davide Mercuri, Marcello Rimondi
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
2016-04-05
Technical Paper
2016-01-0557
Mohsen Mirzaeian, Federico Millo, Luciano Rolando
A 0D phenomenological turbulence model, based on the K-k and k- ɛ approaches, was coupled with a predictive turbulent combustion model using the commercial code GT-Suite, and its predictive capabilities were assessed for a downsized turbocharged SI engine. Differently from the 3D-CFD approach which is typically utilized to describe the evolution of the in-cylinder flow field, and which has very high computational requirements, the 0D phenomenological approach adopted in this work gives the opportunity to predict the evolution of the in-cylinder charge motion and the subsequent combustion process by means of a turbulent combustion model, with a significantly reduced computational effort, thus paving the way for the simulation of the whole engine operating map.
2016-04-05
Journal Article
2016-01-0559
Jonathan M. S. Mattson, Christopher Depcik
Abstract In-cylinder engine modeling is a necessary aspect of combustion research. In particular, simulating heat release connects variable combustion behavior to fuel properties through the 1st Law of Thermodynamics. One extension of such models is to evaluate changes to in-cylinder behavior using the Second Law of Thermodynamics in order to identify the peak period of availability for work extraction. Thus, Second Law models are a useful tool to augment research into alternative fuel usage and optimization. These models also help identify internal irreversibilities that are separate from heat transfer and exhaust gas losses. This study utilizes a multi-zone 1st and 2nd Law Heat Release model to characterize the changes in combustion behavior of a number of neat fuels used in a single-cylinder compression ignition (CI) engine.
2016-04-05
Journal Article
2016-01-0560
Matthew C. Robinson, Nigel N. Clark
Abstract The free piston linear engine has the potential to achieve high efficiency and might serve as a viable platform for robust implementation of low temperature combustion schemes (such as homogeneous charge compression ignition - HCCI) due to its ability to vary compression and stroke in response to cylinder and load events. A major challenge is control of the translator motion. Lack of geometric constraint on the piston leads to uncertainty about its top dead center position and timing. While combustion control depends on knowledge of the piston motion, the combustion event also affects the motion profile of the piston. To advance understanding of this coupled system, a numeric model was developed to simulate multiple cycles of a dual cylinder, spring assisted, 2-stroke HCCI, free piston linear engine generator.
2016-04-05
Technical Paper
2016-01-0547
Andrea Piano, Federico Millo, Giulio Boccardo, Mahsa Rafigh, Alessandro Gallone, Marcello Rimondi
The predictive capabilities of an innovative multizone combustion model DIPulse, developed by Gamma Technologies, were assessed in this work for a last generation common rail automotive diesel engine. A detailed validation process, based on an extensive experimental data set, was carried out concerning the predicted heat release rate, the in-cylinder pressure trace, as well as NOx and soot emissions for several operating points including both part load and full load points. After a preliminary calibration of the model, the combustion model parameters were then optimized through a Latin Hypercube Design of Experiment (DoE), with the aim of minimizing the RMS error between the predicted and experimental burn rate of several engine operating points, thus achieving a satisfactory agreement between simulation and experimental engine combustion and emissions parameters.
2016-04-05
Technical Paper
2016-01-0546
Henry McCabe, William F. Northrop, James Van de Ven
Abstract The impact of compression ratio on engine efficiency is well known. A plethora of mechanical concepts have been proposed for altering engine compression ratio in real time. Some of these, like free-piston configurations or complex crank-slider mechanisms have the added ability to alter piston trajectory along with compression ratio. This secondary modality raises the question: Is there a more optimal piston position versus crank-angle profile for spark-ignition (SI) engines than the near-sinusoidal motion produced by a traditional four-bar crank-slider mechanism? Very little published literature directly addresses this question. This work presents the results of a quasi-dimensional SI engine model using piston trajectory as an input. Specific trajectory traits including increased dwell at top dead center and asymmetric compression and expansion strokes were swept.
2016-04-05
Technical Paper
2016-01-0549
Hai Wu, Meng-Feng Li
Abstract A GT-Power Fast Run Model simplified from detail model for HIL is verified with a bench test using the dSPACE Simulator. Firstly, the conversion process from a detailed model to FRM model is briefly described. Then, the spark timing, fuel pulse with control for FAR, and torque level control are developed for proof of concept. Moreover a series of FRM/Simulink co-simulation and HIL tests are conducted. In the summary, the test results are presented and compared with GT detailed model simulations. The test results show that the FRM/dSPACE HIL stays consistent in most variables of interest under 0.7-0.9 real-time factor condition between 1000 - 5000 RPM. The same steady-state can be reached by RCP controllers or with GT-Power internal controllers. The transient states are close using different control algorithm. The main purpose of HIL application is achieved, despite inconsistencies in performance data like fuel consumption.
2016-04-05
Technical Paper
2016-01-0548
Estefanía Hervas-Blasco, Emilio Navarro-Peris, José Corberan, Alex Rinaldi
Abstract Nowadays, more than 50% of the fuel energy is lost in CNG Engines. While efforts to increase their efficiency have been focused mainly on the improvement of the combustion process, the combustion chamber and the reduction of friction losses, heat losses still remain the most important inefficient factor. A global strategy in which several energy recovery strategies are implemented could lead to engine improvements up to 15%. Therefore, the development of accurate models to size and predict the performance of the integrated components as well as to define an optimized control strategy is crucial. In this contribution, a model to analyze the potential of a new powertrain based on the electrification of the main auxiliaries, the integration of a kinetic energy recovery system and the exhaust gases heat recovery through a thermoelectric generator and a turbo-component is presented.
2016-04-05
Journal Article
2016-01-0551
Dan DelVescovo, Sage Kokjohn, Rolf Reitz
Abstract A correlation was developed to predict the ignition delay of PRF blends at a wide range of engine-relevant operating conditions. Constant volume simulations were performed using Cantera coupled with a reduced reaction mechanism at a range of initial temperatures from 570-1860K, initial pressures from 10-100atm, oxygen mole percent from 12.6% to 21%, equivalence ratios from 0.30-1.5, and PRF blends from PRF0 to PRF100. In total, 6,480 independent ignition delay simulations were performed. The correlation utilizes the traditional Arrhenius formulation; with equivalence ratio (φ), pressure (p), and oxygen mole percentage (xo2) dependencies. The exponents α, β, and γ were fitted to a third order polynomial with respect to temperature with an exponential roll-off to a constant value at low temperatures to capture the behavior expressed by the reaction mechanism. The location and rate of the roll-off functions were modified by linear functions of PRF.
2016-04-05
Technical Paper
2016-01-0550
Zhijia Yang, Edward Winward, Gary O'Brien, Richard Stobart, Dezong Zhao
Abstract The intrinsic model accuracy limit of a commonly used Exhaust Gas Recirculation (EGR) mass flow rate model in diesel engine air path control is discussed in this paper. This EGR mass flow rate model is based on the flow of a compressible ideal gas with unchanged specific heat ratio through a restriction cross-area within a duct. A practical identification procedure of the model parameters is proposed based on the analysis of the engine data and model structure. This procedure has several advantages which include simplicity, low computation burden and low engine test cost. It is shown that model tuning requires only an EGR valve sweep test at a few engine steady state operating points.
2016-04-05
Technical Paper
2016-01-0552
Hui Liu, Zhi Wang, Yan Long, Yunliang Qi, Dongbo Yang, Jianxin Wang
Abstract A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
2016-04-05
Journal Article
2016-01-0570
Gianluca Montenegro, Tarcisio Cerri, Augusto Della Torre, Angelo Onorati, Marco Fiocco, Davide Borghesi
Abstract In this work an integration between a 1D code (Gasdyn) with a CFD code (OpenFOAM®) has been applied to improve the performance of a Moto3TM engine. The four-stroke, single cylinder S.I. engine was modeled, in order to predict the wave motion in the intake and exhaust systems and study how it affects the cylinder gas exchange process. The engine considered was characterized by having an air induction system with integrated filter cartridge, air-box and intake runner, resulting in a complex air-path form the intake mouth to the intake valves, which presents critical aspects when a 1D modeling is addressed. This paper presents a combined and integrated simulation, in which the intake systems was modeled as a 3D geometry whereas the exhaust system, which presented a simpler geometry, was modeled by means of a 1D approach.
2016-04-05
Technical Paper
2016-01-0569
Mahir Tim Keskin, Michael Grill, Michael Bargende
Abstract Operating gasoline engines at part load in a so-called Gasoline-HCCI (gHCCI) combustion mode has shown promising results in terms of improved efficiency and reduced emissions. So far, research has primarily been focused on experimental investigations on the test bench, whereas fast, predictive burn rate models for use in process calculation have not been available. Such a phenomenological model is henceforth presented. It describes the current burn rate as the sum of a sequential self-ignition process on the one hand and a laminar-turbulent flame propagation on the other hand. The first mechanism is essentially represented by ignition delay calculation, in which the reaction rate is computed separately for some hundred groups of different temperatures based on the Arrhenius equation. Thermal inhomogeneity is described by a contaminated normal distribution which accounts for the influence of wall temperature on mixture close to the cylinder wall.
2016-04-05
Journal Article
2016-01-0572
Stephanie Stockar, Marcello Canova, Baitao Xiao, Wengang Dai, Julia Buckland
Abstract Engine downsizing, boosting, direct injection and variable valve actuation, have become industry standards for reducing CO2 emissions in current production vehicles. Because of the increasing complexity of the engine air path system and the high number of degrees of freedom for engine charge management, the design of air path control algorithms has become a difficult and time consuming process. One possibility to reduce the control development time is offered by Software-in-the-Loop (SIL) or Hardware-in-the-Loop (HIL) simulation methods. However, it is significantly challenging to identify engine air path system simulation models that offer the right balance between fidelity, mathematical complexity and computational burden for SIL or HIL implementation.
2016-04-05
Technical Paper
2016-01-0571
Guillaume Bernard, Mark Scaife, Amit Bhave, David Ooi, Julian Dizy
Abstract Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
2016-04-05
Technical Paper
2016-01-0574
Jie Hou, Wayne Chang, Fuwu Yan, Chia-Fon Lee
Abstract The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively.
2016-04-05
Technical Paper
2016-01-0573
Santosh Trimbake, Dileep Malkhede
Abstract Novel port dual-injection (PDI) strategy helps to utilize bio-fuels, improve the performance and lower the emissions with higher mass fractions of bio-fuels. PDI strategy in SI engine allows intake manifold blending of two different fuels at any blend ratio. This paper presents the numerical study of PDI strategy using a single cylinder SI Ricardo E6 research engine. The objective of this study is to extend predictive fractal combustion model for ethanol/gasoline blends and assess the influence of ethanol (E10 to E50 mass fractions) addition to gasoline in a PDI engine. Quasi dimensional simulation is carried out using AVL Boost under wide open throttle condition at 1500 rpm. AVL Boost engine model is validated for gasoline and ethanol/gasoline pre-blends port fuel injection (PFI) with the experimental data of published literature obtained for the same engine.
2016-04-05
Technical Paper
2016-01-0575
Konstantinos Siokos, Rohit Koli, Robert Prucka, Jason Schwanke, Shyam Jade
Abstract Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
2016-04-05
Technical Paper
2016-01-0576
Chad Koci, Kenth Svensson, Christopher Gehrke
Abstract A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
2016-04-05
Technical Paper
2016-01-0561
Seungha Lee, Youngbok Lee, Kyoungchan Han, Kyoung Min Lee, Jun Yu, Junyong Lee, Kyoungdoug Min
Abstract Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Viewing 1 to 30 of 1496

Filter

  • Range:
    to:
  • Year: