Criteria

Text:
Content:
Display:

Results

Viewing 241 to 270 of 414
2014-01-15
Video
Using pressure sensitive adhesive tapes to achieve economy and efficiency in automotive assembly
2012-06-18
Video
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
2012-05-10
Video
The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
2012-05-10
Video
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
2012-05-10
Video
This presentation focuses on the efforts Coordinating Research Council is sponsoring relating fuel properties and composition to performance in emerging advanced high efficiency, clean combustion engines. Presenter William J. Cannella, Chevron USA Inc.
2012-05-16
Video
With automotive electrification, the electric machines show a tendency to share or even replace the dominant role of internal combustion engines in future vehicles. Besides the design and innovation of different electric machines to meet the needs of powertrain and drivetrain performances, high volume production becomes a challenging topic and an un-avoided requirement. Flexible line and sharing line will help the variation of production rate and volume, while the dedicated unique line contributes to large scale of E-motor production. Supplier chain from raw materials, parts to processes has to be built from ground-zero or low grade to mature stage within quality specification and time limitation. Multi function skills, cross area technologies and complex management etc are all required for E-motor manufacturer to grow up with component and equipment suppliers. Reducing cost, improving quality and guaranteeing safety are always the thematic series.
2012-06-06
Video
This presentation will introduce the overall goals of the EcoCAR competition in brief, and will go into the third and final year of the competition in detail. The final year of competition saw teams refining and testing their student-built advanced technology vehicles including hybrids, plug-in hybrids, hydrogen fuel cell PHEVs and one battery electric. Important events, such as the Spring Workshop chassis dynamometer testing event at the U.S. Environmental Protection agency, as well as significant competition results, such as vehicle performance, consumer acceptability and efficiency will be presented. Presenter Patrick Walsh
2012-06-18
Video
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
2012-06-18
Video
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
2015-04-15
Video
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
2012-06-18
Video
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
2015-04-15
Video
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Fuel efficiency, or simply put, how to get more mileage out of the same amount of fuel has become one of the main goals to be achieved by new automotive technologies in the future, thanks in part to new government regulations. In the episode “Fuel Efficiency: Racing toward CAFE 2025” (21:24) AVL engineers show simulation and testing being used to design more fuel efficient vehicles, including the equipment that actually analyzes fuel economy.
2015-04-15
Video
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Accurate data is critical for the testing and development of parts and systems for cars, trucks, and airplanes. To obtain this data, engineers rely on high-end specialty sensors that can fit into cramped spaces and operate reliably under extreme heat and pressure. In the episode “Sensors: Miniaturization and Testing” (21:02), AVL engineers explain how a new crystalline material was developed to accurately measure the high pressures in the combustion chamber of turbocharged engines, and Meggitt Sensing Systems profiles the world’s smallest triaxial IEPE accelerometer.
2015-04-15
Video
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
2013-08-05
Video
The Kettering team tells us about their process at the 2013 Formula SAE event in Lincoln, Nebraska.
2015-04-16
Video
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
2015-02-01
Video
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode “Sensors: Advanced Safety” (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
2012-05-16
Video
It is a challenge to write a good motor specification. Typical spec. problems are omitted or ambiguous requirements, or overly tight tolerances that drive up cost but not value. These problems create hidden penalties in cost, performance, reliability, and development time. This presentation will describe common problems in traction motor specifications and associated penalties, as well as recommendations to avoid them. Topics will include spec.?s for demagnetization, mechanical considerations, torque ripple, performance, and others. Presenter David A. Fulton, Remy Inc.
2012-06-15
Video
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
2012-06-18
Video
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
2012-06-18
Video
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
2012-06-18
Video
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
2012-06-18
Video
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
2012-06-18
Video
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
2012-06-05
Video
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
2012-06-05
Video
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles. Presenter Shawn Getty
2012-05-10
Video
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. This presentation outlines development of this combustion concept in a modern normally aspirated PFI production engine. Experimental results have highlighted high thermal efficiency (42.8%), significant fuel economy improvement (>20%), low engine out NOx (<10 ppm), knock limit extension, high load capability (>13 bar IMEPn) and high speed operation (5500 rev/min). Presenter William P Attard, MAHLE Powertrain LLC
2012-05-10
Video
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
2012-05-10
Video
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
2012-05-10
Video
Gasoline engines continue to suffer from significant pumping losses despite decades of effort focused on reducing throttling. Honeywell Turbo has developed a throttle with an integrated turbine/generator that generates electricity by recovering pumping work. This energy offsets power normally provided by the crank driven alternator, thereby saving fuel. It integrates well with modern electrical systems which employ smart charging and idle stop strategies. The ThrottleCharger provides fuel economy benefits up to 5% over federal test cycles and in real world conditions. Presenter Mike Guidry, Honeywell Int'l (Turbo Technologies)
Viewing 241 to 270 of 414

Filter

  • Video
    414
  • Range:
    to:
  • Year: