Criteria

Text:
Sector:
Display:

Results

Viewing 211 to 240 of 108111
2010-10-25
Technical Paper
2010-01-2238
Yongli Qi, Hao Liu, Kenneth Midkiff, Paulius Puzinauskas
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
2010-10-25
Journal Article
2010-01-2242
Scott D. Schwab, Joshua J. Bennett, Steven J. Dell, Julie M. Galante-Fox, Alexander M. Kulinowski, Keith T. Miller
To meet increasingly stringent diesel exhaust emissions requirements, original equipment manufacturers (OEMs) have introduced common rail fuel injection systems that develop pressures of up to 2000 bar (30,000 psi). In addition, fuel delivery schemes have become more complicated, often involving multiple injections per cycle. Containing higher pressures and allowing for precise metering of fuel requires very tight tolerances within the injector. These changes have made injectors more sensitive to fuel particulate contamination. Recently, problems caused by internal diesel injector deposits have been widely reported. In this paper, the results of an investigation into the chemical nature and probable sources of these deposits are discussed. Using an array of techniques, internal deposits were analyzed from on a number of sticking injectors from the field and from OEM test stands in North America.
2010-10-25
Technical Paper
2010-01-2239
Yongli Qi, Hao Liu, Kenneth Midkiff, Paulius Puzinauskas
Hybrid vehicle engines modified for high exhaust gas recirculation (EGR) are a good choice for high efficiency and low NOx emissions. Such operation can result in an HEV when a downsized engine is used at high load for a large fraction of its run time to recharge the battery or provide acceleration assist. However, high EGR will dilute the engine charge and may cause serious performance problems such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. It is accepted that the detailed experimental characterization of flow field near top dead center (TDC) in an engine environment is no longer practical and cost effective.
2010-10-25
Technical Paper
2010-01-2255
Sadami Yoshiyama
In order to detect the combustion quality in a production SI engine, the ion sensor of gasket type was used. The relationship between the ion current and the rate of heat release has been discussed. Under varying equivalence ratio, intake pressure and engine speeds, the averaged start and peak timings of the ion current for 8 electrodes correspond to timings of 50% MFB and 90% MFB respectively, are also discussed. The waveforms accumulated for all signals of the 8 electrodes are discussed as being analogues to the waveform of a ring ion sensor. Coincidentally, the cycle resolved ion current waveforms accumulated from the 8 electrodes is seen to vary with the rate of heat release. The ion current fraction accumulated (ICFA), has been defined using the summation waveforms of ion current from a gasket ion sensor. It was found that the timing of 5% ICFA corresponds with that of 50% MFB and the timing of 50% ICFA corresponds with that of 90% MFB.
2010-10-25
Journal Article
2010-01-2254
Russell P. Fitzgerald, Richard R. Steeper
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
2010-10-25
Journal Article
2010-01-2251
Jay B. Jeffries, Jason M. Porter, Sung Hung Pyun, Ronald K. Hanson, Kevin R. Sholes, Kiyotaka Shouji, Tomohiro Chaya
Simultaneous crank-angle-resolved measurements of gasoline concentration and gas temperature were made with two-color mid-infrared (mid-IR) laser absorption in a production spark-ignition engine (Nissan MR20DE, 2.0L, 4 cyl, MPI with premium gasoline). The mid-IR light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug. The absorption line-of-sight was a 5.3 mm optical path located closely adjacent to the ignition spark providing spatially resolved absorption. Two sensor wavelengths were selected in the strong bands associated with the carbon-hydrogen (C-H) stretching vibration near 3.4 μm, which have an absorption ratio that is strongly temperature dependent. Fuel concentration and temperature were determined simultaneously from the absorption at these two wavelengths.
2010-10-25
Journal Article
2010-01-2250
Rinaldo Caprotti, Nadia Bhatti, Graham Balfour
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
2010-10-25
Technical Paper
2010-01-2249
Matthias Zink, Thorsten Raatz, Thomas Wintrich, Peter Eilts
Environmental and economical reasons have led to an increased interest in the usage of alternative fuels for combustion engines. To clarify the influence of these so-called future fuels on engine performance and emissions it is mandatory to understand their effect on spray formation. Usually this is done by performing various spray experiments with potential future fuels which are available for research purposes today. Due to the multitude of possible future fuels and therefore the uncertainty of their properties and their influence on spray formation a more general approach was chosen in the present study. The possible range of physical properties of future fuels for diesel engines was identified and more than twenty different fluids with representative properties, mostly one-component chemicals, were chosen by means of design of experiment (DoE).
2010-10-25
Technical Paper
2010-01-2247
Cyril Crua, Tenzin Shoba, Morgan Heikal, Martin Gold, Cassandra Higham
The formation and breakup of diesel sprays was investigated experimentally on a common rail diesel injector using a long range microscope. The objectives were to further the fundamental understanding of the processes involved in the initial stage of diesel spray formation. Tests were conducted at atmospheric conditions and on a rapid compression machine with motored in-cylinder peak pressures up to 8 MPa, and injection pressures up to 160 MPa. The light source and long range imaging optics were optimized to produce blur-free shadowgraphic images of sprays with a resolution of 0.6 μm per pixel, and a viewing region of 768x614 μm. Such fine spatial and temporal resolutions allowed the observation of previously unreported shearing instabilities and stagnation point on the tip of diesel jets.
2010-10-25
Technical Paper
2010-01-2265
Mario Marzano, Patrizio Nuccio
As in the standard American Society for Testing and Materials (ASTM) procedure which is used to evaluate the fuel Octane Number (ON), some signal properties are considered, while others are neglected, it happens that different pressure signals of the sensor, obtained from different fuels and operating conditions, can lead to the same Knock Intensity index (KI) value, even though the knock behavior is not the same. Therefore the aim of this work was to analyze the standard signal processing chain of the Cooperative Fuel Research engine (CFR) (from the pressure sensor to the knock-meter display) and its effects on the value of the KI, for different fuels and operating conditions.
2010-10-25
Technical Paper
2010-01-2264
Bogdan Radu, Dinu Fuiorescu
This paper study the case of a heavy-duty spark ignition engine fueled with LPG, for which it was demonstrated that the thermal effect of the pre-knock reactions in the end-gas occur in the presence of alkenes, one of the commercial LPG main component. In this sense, the engine was operated at full load, with different spark advances generating different levels of knock, which was characterized in terms of angle and intensity. It was developed a classical two zone thermodynamic combustion model for predicting the end-gas pressure and temperature levels, which are cycle-by-cycle variables. It was made the comparison between the cycles with knock and without and it was find that in the knocking cycles case the end-gas temperature is higher, this situation being attributed to the presence of alkenes in the fuel composition.
2010-10-25
Technical Paper
2010-01-2262
Cinzia Tornatore, Simona Merola, Paolo Sementa
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
2010-10-25
Technical Paper
2010-01-2259
Mark T. Devlin, Todd Dvorak, Roger Sheets, Ian Bell, John Loper, Jeffrey Guevremont, Gregory Guinther
Previous research to understand the mechanism for piston deposit formation in the Sequence IIIG engine test has focused on characterizing the piston deposits. These studies concluded that, in addition to lubricant derived materials, Sequence IIIG piston deposits contain a significant amount of fuel-derived carbonaceous material. The presence of fuel degradation by-products in Sequence IIIG deposits shows that blow-by is a significant contributor to deposit formation. However, blow-by can either assist in the degradation of the lubricant or can simply be a source for organic material which can be incorporated into the deposits. Therefore, a series of modified Sequence IIIG engine tests were conducted to better determine the effect of blow-by on deposit formation. In these studies deposit formation on different parts of the piston assembly were examined since different parts of the piston assembly are exposed to different amounts of blow-by.
2010-10-25
Technical Paper
2010-01-2271
Stephen Busch, Christian Disch, Heiko Kubach, Ulrich Spicher
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
2010-10-25
Technical Paper
2010-01-2272
Ki-Hyun Baek
Use of biodiesel fuel (or its blends with petroleum diesel) has become of worldwide interest and seriously investigated for its merits and demerits. This study focused on the effects of using BD30 (a blend of 30% soybean methylester biodiesel and 70% ultra low sulfur diesel fuel) in the aspects of exhaust emissions and combustion characteristics in a modern SUV, equipped with 3.0 liter CRDI engine. In general, it has been reported that the use of biodiesel could be beneficial for the emissions of HC, CO and PM at a certain degree of the deteriorations in NOx level and fuel economy. However, our current tests with BD30 by driving on the European emission cycle resulted in an increased HC and CO emission level, compared to the standard diesel fuel.
2010-10-25
Journal Article
2010-01-2273
George Karavalakis, Evaggelos Bakeas, Stamos Stournas
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
2010-10-25
Technical Paper
2010-01-2268
Jun Deng, Chunwang Li, Zongjie Hu, Zhijun Wu, Liguang Li
Biodiesel has been paid more and more attention as a renewable fuel due to some excellent properties such as renewable, high cetane number, ultralow sulfur content, no aromatic hydrocarbon, high flash point, low CO2 emission when compared with diesel. While others physical properties like high viscosity, high surface tension, big density and bad volatility would spoil the spray characteristics of biodiesel fuel, which will affect the thermal efficiency when running in diesel engine. Accompanied with constant volume vessel and high speed video camera system, a high pressure common rail system, which could provide an injection pressure of 180 MPa, is used to investigate the characteristics of jatropha curcas biodiesel, palm oil biodiesel and diesel fuel. The effects of injection pressures and ambient densities on spray characteristics of these fuels are studied.
2010-10-25
Technical Paper
2010-01-2274
Hajime Fujimoto
The premixed charge compression ignition (PCCI) combustion in a compression ignition (Cl) engine is one of countermeasures against the very much severe regulation for exhaust gas of engine out. The authors have been proposed to use the fuel mixed with high volatility component and low volatility component to actualize PCCI combustion. This kind of fuel injected forms a fine and lean spray by the flash boiling phenomena which depends on the pressure and the temperature. The role of the former fuel is to decrease in the generation of particulate matters (PM) and that of the latter one is to break out the ignition. Thus, it is very much significant to find the distribution of vapor concentration of both fuels in a spray. This paper describes both distributions in a single diesel spray by use of the technique of laser induced fluorescence (LIF) in a constant volume chamber with high temperature at high pressure as the fundamental research.
2010-10-25
Technical Paper
2010-01-2158
Panu Karjalainen, Juha Heikkila, Topi Ronkko, Jorma Keskinen, Kati Lehtoranta, Pekka Matilainen, Toni Kinnunen
Under on-road driving conditions, the engine load and speed and the cooling effect of ambient air may affect the functioning of exhaust aftertreatment devices. In this paper, we studied the effects of these parameters on the functioning of the combination of a Diesel Oxidation Catalyst and a Particle Oxidation Catalyst (DOC+POC). In the engine tests, the engine load and speed were observed to affect the nonvolatile particle reduction efficiency curve of the DOC+POC; while the nonvolatile core particle (Dp ≺ 15 nm) reduction was high (97-99%) in all the engine test modes, the reduction of soot varied from 57% at low load to 70% at high load. Because the change in engine load and speed affected both the exhaust temperature and flow velocity, the effects of these parameters were measured separately in an aerosol laboratory.
2010-10-25
Journal Article
2010-01-2160
Steven J. Schmieg
Unique silver/alumina (Ag-Al₂O₃) catalysts developed using high-throughput discovery techniques in collaboration with BASF Corporation were investigated at General Motors Corporation under simulated lean-burn engine exhaust feed conditions for the selective catalytic reduction of NOx using hydrocarbons (HC-SCR). Hydrocarbon mixtures were used as the reductant to model the multi-component nature of diesel fuel and gasoline. Previous work has shown promising HC-SCR results in both laboratory reactor and engine dynamometer testing. This report investigates several aspects of HC-SCR catalyst durability, including thermal durability, sulfur tolerance, and hydrocarbon deactivation.
2010-10-25
Technical Paper
2010-01-2156
Stefano Frigo, Stefania Zanforlin, Ettore Musu, Riccardo Rossi, Roberto Gentili
The paper describes the CFD analysis, the arrangement and the first experimental results of a single-cylinder engine that employs an innovative low-pressure hydrogen direct-injection system, characterized by low fuel rail pressure (12 bar) and consequent low residual storage pressure. The injection is split in two steps: at first hydrogen is metered and admitted into a small intermediate chamber by an electroinjector (a conventional one usually employed for CNG), next a mechanically actuated poppet valve, that allows high volumetric flow rates, times hydrogen injection from the intermediate chamber to the cylinder within a short time, despite the high hydrogen volume due to the low injection pressure. Injection must be properly timed to maintain pressure below 6 bar (or little more) in the intermediate chamber and thus keep sonic flow through the electroinjector, to maximize volumetric efficiency and to avoid backfire in the intake pipe.
2010-10-25
Technical Paper
2010-01-2157
Lyn McWilliam, Anton Zimmermann
Tier 4 Final legislation commences from 2008 - 2015, depending on engine power. At the same time the use of biodiesel is being incentivized or mandated in many countries. This is driving up the proportion of biodiesel available to the diesel engine fleet and so it is important to understand its impact on possible Tier 4 Final engine and aftertreatment systems. One of the solutions being explored to meet Tier 4 Final emissions regulations is selective catalytic reduction (SCR) using urea and an appropriate catalyst. Previous researchers have highlighted the potential for biodiesel to have a much greater impact on percentage increase in tailpipe NOx on engines equipped with Urea SCR aftertreatment than has historically been the case for engine-out NOx increase. Increases of as much as 80% have been presented, but without knowledge of the engine-out or absolute NOx emission data, it has not been possible to draw any conclusions from some of these publications.
2010-10-25
Technical Paper
2010-01-2163
Kaname Naganuma, Yasuo Takagi, Atsuhiro Kawamura, Yoshio Sato
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOX) emissions. There are many possible combinations of injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, NOX emissions of natural aspirated 4 cylinders engine with management strategies involving the injection timing, ignition timing, lambda and the EGR rate were evaluated under a Japanese JE05 emissions test cycle. Finally, the paper projects the potential of direct injection hydrogen engine for obtaining high output power and attaining low NOX emissions of 0.7 g/kWh under the emission test cycle.
2010-10-25
Journal Article
2010-01-2164
Yi Yang, John E. Dec, Nicolas Dronniou, Blake Simmons
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
2010-04-12
Journal Article
2010-01-0557
Gregory Austin, Jeffrey Naber, John H. Johnson, Chris Hutton
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
2010-04-12
Journal Article
2010-01-0559
Keld Johansen, Gurli Mogensen, Damien Mey, David Pinturaud
Silicon carbide diesel particulate filter (DPF) is now recognized as the most effective and robust way to reduce not only the mass but also the number of emitted particles on diesel passenger cars. Widespread use of expensive catalytic platinum-containing coatings has contributed to increased harmful NO₂ emissions. A novel low-cost palladium-base metal coating, BMC-211, was developed which assists soot regeneration by oxygen transport and which actively removes NO₂ still having comparable passive and active soot regeneration properties. The novel coating was tested against a traditional commercial platinum coating on a modern series-produced car, on chassis dynamometer and on engine test bench.
2010-04-12
Technical Paper
2010-01-0560
Ted N. Tadrous, Kevin Brown, Paul Towgood, Campbell McConnell
Active regeneration of diesel particulate filters is becoming essential for performance longevity given the diversity of duty cycles and engines' operating behaviors for existing and newer engines. The Syngas containing hydrogen and carbon monoxide from diesel fuel and air produced by the non-catalytic Syngas Generator is potential candidate to actively enhance the regeneration efficiency of diesel particulate filters. The Syngas is utilized to create an exothermic condition over a pre-catalyst to the DPF to bring exhaust gas temperature from as low as 200°C to 650°C to enable a sustained DPF regeneration process. The Syngas is introduced to an inlet assembly which is divided into 4 quadrants so the full Syngas is mixing with a quarter of the exhaust flow and regenerating one DPF quadrant at a time. The Syngas DPF system is designed to operate seamlessly and is transparent to the vehicle operator.
2010-04-12
Technical Paper
2010-01-0562
Kun chul Park, Soonho Song, Kwang min Chun
Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emissions of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at 550~650°C. Fuel penalty occurs when the exhaust gas temperature is increased. The low temperature oxidation technique is needed to reduce fuel consumption. In this study, we found that hydrogen could be used to decrease the PM oxidation temperature significantly on a catalyzed DPF (CDPF). The oxidation characteristics of PM with hydrogen supplied to CDPF were studied using a partial flow system. The partial flow system was used to control temperature and a flow rate independently. The CDPF was coated with Pt/Al₂O₃ 25g/ft₃, and a multi-channel CDPF (MC CDPF) with a square cross section of 1.65 cm width and length of 10 cm was used.
2010-04-12
Technical Paper
2010-01-0563
Svetlana Iretskaya, Steve Golden, Ted Tadrous, Shun Hong Long
Non-PGM catalyst containing base metal mixed oxide (BMMO) supported on rare earth mixed oxide (REMO) had been evaluated by various methods for soot-oxidation activity. Thermo-gravimetric/Differential Thermal Analysis (TG/DTA) experiments and synthetic gas bench activity tests showed that the catalyst was able to oxidize soot at temperatures significantly lower than soot combustion temperature leading to a conclusion that soot was oxidized via direct reaction with active species of the catalyst surface. It had been shown that low-temperature soot oxidation occurred with and without NO present in the reaction gas. Evaluation on engine benches of the BMMO catalyst coated on diesel particulate filters (DPF) confirmed low-temperature soot oxidation in exhaust gas with low NO₂ concentration and a possibility of cost-efficient diesel exhaust aftertreatment system without increasing tailpipe NO₂ content.
2010-04-12
Technical Paper
2010-01-0564
Frank Willems, Erik Doosje, Frank Engels, Xander Seykens
This paper presents a cylinder pressure-based control (CPBC) system for conventional diesel combustion with high EGR levels. Besides the commonly applied heat release estimation, the CPBC system is extended with a new virtual NOx and PM sensor. Using available cylinder pressure information, these emissions are estimated using a physically based combustion model. This opens the route to advanced On-Board Diagnostics and to optimized fuel consumption and emissions during all operating conditions. The potential of closed-loop CA50 and IMEP control is demonstrated on a multi-cylinder heavy-duty EGR engine. For uncalibrated injectors and fuel variations, the combustion control system makes the engine performance robust for the applied variations and reduces the need for a time-consuming calibration process. Cylinder balancing is shown to enable auto-calibration of fuel injectors and to enhance fuel flexibility.
Viewing 211 to 240 of 108111

Filter

  • Range:
    to:
  • Year: